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In the present study, the Information Value (InfoVal) and the Multiple Logistic Regression 

(MLR) methods based on bivariate and multivariate statistical analysis have been applied for 

shallow landslide initiation susceptibility assessment in a selected subwatershed in the Western 

Ghats, Kerala, India, to determine the suitability of geographical information systems (GIS) 

assisted statistical landslide susceptibility assessment methods in the data constrained regions. The 

different landslide conditioning terrain variables considered in the analysis are geomorphology, 

land use/land cover, soil thickness, slope, aspect, relative relief, plan curvature, profile curvature, 

drainage density, the distance from drainages, lineament density and distance from lineaments. 

Landslide Susceptibility Index (LSI) maps were produced by integrating the weighted themes and 

divided into five landslide susceptibility zones (LSZ) by correlating the LSI with general terrain 

conditions. The predictive performances of the models were evaluated through success and 

prediction rate curves. The area under success rate curves (AUC) for InfoVal and MLR generated 

susceptibility maps shows 84.11% and 68.65%, respectively. The prediction rate curves show 

good to moderate correlation between the distribution of the validation group of landslides and 

LSZ maps with AUC values of 0.648 and 0.826 respectively for MLR and InfoVal produced LSZ 

maps. Considering the best fit and suitability of the models in the study area by quantitative 

prediction accuracy, LSZ map produced by the InfoVal technique shows higher accuracy, i.e. 

82.60%, than the MLR model and is more realistic while compared in the field and is considered 

as the best suited model for the assessment of landslide susceptibility in areas similar to the study 

area. The LSZ map produced for the area can be utilised for regional planning and assessment 

process, by incorporating the generalised rainfall conditions in the area. 

Keywords: Western Ghats, shallow landslide, information value, multiple logistic regression, 

susceptibility assessment. 

 

 

 

 

1 Introduction 

 

Landslides are considered as the most disastrous 

hydro-geological phenomena which frequently occur 

in association with extreme climatic and geologic 

events. Most of the mountainous terrains in tropical 

and subtropical environments are characterised by one 

or another type of mass movements. Assessment of 
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landslide susceptibility zones enables the society to 

develop proper planning in the developmental 

activities. The research of landslides and landslide 

prone areas has focused on the risks and hazards 

related to them, their consequences and the factors 

that govern their occurrence (Pourghasemi et al., 

2013). In developing countries, the landslide 

susceptibility assessment is the only possibility of 

overcoming the consequences, risks and hazards 

associated with this problem. Landslide hazard 

assessment can be a vital tool to understand the basic 

characteristic of the terrain that is prone to failure and 

was first introduced by Varnes (1984) as landslide 

hazard zonation to quantitatively measure the 

landslide hazard. The term susceptibility is commonly 

used to identify the location of potential landslides in 

a given region based on a set of terrain characteristics 

(Carrara, 1983; Zezere, 2002; Dahal et al., 2008; 

Ercanoglu and Temiz, 2011; Yilmaz et al., 2012). The 

probability of spatial occurrence of future landslides 

is reflected in a terrain failure susceptibility map, 

which indicates the potential starting zones. The rapid 

development of spatial information technologies, 

especially the availability of high resolution remote 

sensing images, digital elevation models and powerful 

application of geographical information systems 

(GIS) together made great advancement in mapping 

and assessment of landslide susceptibility of an area 

using different methods (Carrara et al., 1991; 

Brenning, 2005; van Westen et al., 2006; Akbar and 

Ha, 2011; Akgun et al., 2012; Althuwaynee et al., 

2010; Pourghasemi et al., 2013; Ozdemir and Altural, 

2013). The process of GIS-aided landslide 

susceptibility mapping at present involves several 

methods that can be considered as either qualitative or 

quantitative. Qualitative methods depend on expert 

opinions, and are often useful for regional 

assessments (Aleotti and Chowdhury, 1999; van 

Westen et al., 2003). To remove subjectivity in 

qualitative analysis, various statistical methods have 

been used in LSZ studies. The aim of these methods is 

to identify areas that are susceptible to future 

landsliding, based on the knowledge of past landslide 

events, geological attributes, terrain parameters and 

other environmental conditions that are associated 

with the presence or absence of such phenomena. 

Comparison of various methods used for assessing 

landslide susceptibility of a terrain can be found at 

Aleotti and Chowdhury (1999), Guzzetti et al. (1999), 

van Westen (2000) and Huabin et al. (2005).  

Landslides affect large parts of the hilly terrain 

in India, especially, the Himalayas, the Western 

Ghats, the Eastern Ghats and the Vindhyans 

(Nagarajan et al., 1998; Prasannakumar and Vijith, 

2012). Deforestation and anthropogenic activities, 

together with the non-sustainable developmental 

projects and destructive practices, have recently 

increased the frequency of landslides and mass 

wasting in the Himalayas and the Western Ghats 

regions, necessitating predictive and mitigative 

measures. Number of studies have been reported from 

various parts of India, using different techniques and 

approaches, related to the landslide risk reduction by 

systematic mapping and scientific analysis of 

landslide susceptible areas (Thampi et al., 1998; 

Arora et al., 2004; Sarkar and Kanungo, 2004; Saha 

et al., 2005; Pandey et al., 2007; Vijith and Madhu, 

2008; Mathew et al., 2009; Das et al., 2010; Kundu 

et al., 2013; Kannan et al., 2014; Vijith et al., 2014). 

Though number of studies have been conducted to 

identify and map landslide susceptibility zones in 

these regions, no studies have commented on the 

suitability of a method and approach, which have 

been replicated for other regions where similar geo-

environmental conditions exist. The present study 

aims to assess the usability of GIS assisted statistical 

(bivariate and multivariate) landslide susceptibility 

models in a data deficient hilly terrain in the Western 

Ghats of Kerala, India, which witnesses severe land 

degradation due to landslides (debris flows) during 

the monsoon periods. Landslides in the Western 

Ghats, which comes second to the Himalayan region, 

can be categorised as a monsoon related phenomenon. 

The trigger for the landslides in the Western Ghats 

was at the period of heavy rainfall, and as there had 

been little effort to assess or predict the events, 

damage was extensive (Nagarajan et al., 1998; 

Thampi et al., 1998; Vijith et al., 2007; Kuriakose 

et al., 2009; Prasannakumar and Vijith, 2012). The 

analysis techniques which are used for the preparation 

of landslide susceptibility zonation maps are (a) 

information value (InfoVal) and (b) multiple logistic 

regression (MLR). The application of these methods 

can be found at Carrara (1983), van Westen (1997), 

Wu et al. (2000), Zezere (2002), Ayalew and 

Yamagishi (2005), Saha et al. (2005), Duman et al. 

(2006), Gorsevski et al. (2006), Vijith et al. (2007), 

Bhai et al. (2010, 2011), Nandi and Shakoor (2010), 

Akgun (2012), Devkota et al. (2013). 

 

 

2 Study area  

 

The study area lies between latitude 9° 38’ 28” 

and 9° 48’ 25” and longitude 76° 55’ 53” and 

77° 43’ 31” on the western slopes of the Western 

Ghats, the upland catchment of the River Meenachil, 

covering a total area of 154.99 km2 (Fig. 1). The areas 

are highly undulating; maximum elevation of the 

terrain exceeds 1,180 m above sea level (asl), which 

occupies portions of the Peermade plateau in Kerala. 

Geologically the area is made up of hard crystalline 

rocks, in which charnockite occupies 93% of the total 

area followed by biotite gneiss, dolerite, pink/gray 

granite and quartzite. The major geomorphic features 

present in the area are plateau, side slope plateau, 

denudational hills and denudational slope, which 

shows varying terrain inclinations from plain area to 

nearly vertical areas with slope, exceeds more than 

60° with a general west slope. The debris flows which 

occurred in the study area show a climatic signal: 

monsoon (June–November) rainfall induced debris 

flows from the steep slopes of the mountain ranges 

with an elevation range > 250 m occur every year 

after continuous rainfall of 24 h, which exceeds 

250 mm/day. During the phenomena, loose, 



Determining the Suitability of Two Different Statistical Techniques in Shallow Landslide (Debris Flow) Initiation Susceptibility Assessment 

in the Western Ghats 

29 

unconsolidated soil and earth material that rest on the 

rugged hills having steep, long side slopes move 

down the slope, which destroy all the things on the 

path (Fig. 2). 
 

 
Figure 1. Study area location map. 

 

 
Figure 2. Image showing different landslide occurrences in the study area. 

 

 

3 Methodology 

 

3.1 Generation of terrain conditioning geo-

environmental variables 

 

The susceptibility mapping was performed using 

previous landslide locations as the crucial dependent 

variable and different thematic layers as independent 

variables. The geo-environmental variables 

comprising several themes used in the landslide 

susceptibility assessment as independent variables 

were derived from topographical maps, interpretation 

of remote sensing data (IRS P6 LISS III), geological 

map produced by the Geological Survey of India and 

detailed field surveys on a scale of 1:50,000. The 

entire study area covering 154.99 km2 was converted 

into a raster dataset having 387,460 pixels with a 

resolution of 20 m × 20 m. The most crucial theme 

that represents former landslides was collected by 

detailed field survey and located using a global 

positioning system (GPS). The previous landslide 

locations are a prerequisite to perform statistical 

analysis in GIS for assessing the relationship between 

the landslides and influencing parameters (Guzzetti 

et al., 1999; Duman et al., 2006; Vijith et al., 2007; 

Prasannakumar and Vijith, 2012). A total of 

80 landslide points were located from the field and by 

applying a random partition technique 54 landslides 

were chosen for the preparation of landslide 

susceptibility zonation maps, and 26 were kept for 

assessing the predictive capacity of the landslide 

susceptibility maps produced. The thematic data 
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layers prepared include geomorphology, land use/land 

cover, soil thickness, slope, aspect, relative relief, 

plan and profile curvatures, drainage density, distance 

from drainages, lineament density and distance from 

lineaments and are described below. 

Geomorphology, which exhibit the surface 

forms and features present in the terrain, will provide 

vital information about its susceptibility to different 

denudational processes (Thampi et al., 1998; Guinau 

et al., 2005). The geomorphological feature identified 

includes plateau, side slope plateau, denudational hill, 

escarpment, denudational slope, valley fill, residual 

mounds, pediment and water body (Fig. 3a). 

Lithology of the area is found to be monolithic in 

nature, and more than 93% of the area is covered by 

charnockite of the Precambrian age with minor 

variations and less weathering. Lithology was not 

considered in the present analysis because most of the 

landslide activity in the area is shallow and, unlike in 

the Himalayan region, the basement lithology was not 

involved in the landslide process. Land use/land cover 

of the area represents a general vegetation pattern 

based on the terrain characteristics of the area, and the 

role of land use/land cover in conditioning the terrain 

for landsliding was studied by several researchers and 

is reported in various scientific papers (Saha et al., 

2005; Dahal et al., 2008; Akgun, 2012, Pourghasemi, 

et al. 2013). Nine categories of land use/land cover 

types were identified in the study area, and they are 

rocky outcrops, grasslands, bushes and shrubs, tea 

plantations, rubber plantation, crop land, 

cleared/barren area, built-up-land and water body 

(Figure 3b). In a mountainous terrain, the 

development of soil will be very fast due to 

denudation activities; and most of the soil was 

transported to downstream areas due to natural 

processes like soil erosion and landslides. The spatial 

distribution of soil thickness was assessed by detailed 

field survey and found to be varying from 35 cm to 

4.29 m (Figure 3c), in which the maximum thickness 

was found in the western boundary of the study area 

with gently sloping terrain. 

 

 

 
Figure 3.  Terrain conditioning factors used in the analysis: (a) geomorphology; (b) land use/land cover; (c) soil thickness; 

(d) slope; (e) aspect; (f) relative relief. 

 

The most crucial layer in all the landslide 

susceptibility assessment and modelling is the slope 

of the terrain because landslides in any terrain are 

directly controlled by the slope of a particular place 

(Zezere, 2002; Guinau et al., 2005; Nefeslioglu et al., 

2008; Akgun et al., 2012; Yilmaz et al., 2012; 

Devkota et al., 2013). Surface contours of 20 m 

interval digitised from the Survey of India 

topographic map were used to generate the elevation 

surface of the study area from which the important 

terrain variables such as slope, aspect, terrain 

curvatures and relative relief were derived. The 

generated slope map (Fig. 3d) shows a range of values 

between 0–66°, with a mean slope of 17°. The aspect 

map indicates the direction of maximum slope of the 

terrain surface, which along with the slope angle 

makes the terrain influenced by precipitation, 

exposition to sunlight, etc. (Gokceoglu and Aksoy, 

1996; Saha et al., 2005; Akgun et al., 2012). The 

aspect map of the area was divided into nine classes, 

namely, Flat, N, NE, E, SE, S, SW, W and NW 

(Fig. 3e). The slope curvatures are an important 

variable that controls the superficial and subsurface 

hydrological regime of the slope, erosion and 

deposition rate, and soil characteristics (Yesilnacar 

and Topal, 2005; Gorsevski et al., 2006). The plan 

and profile slope curvatures (Fig. 4g and Fig. 4h) are 

divided into three classes, namely concave, flat and 

convex slopes as represented by negative, zero and 

positive values. Relative relief of the terrain indicates 

the changes in elevation in the unit area, and the 

generated relative relief (Fig. 3f) of the terrain varies 

from 4 m/km2 to 826.49 m/km2, with a mean and 

standard deviation of 279.02 m/km2 and 
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152.39 m/km2, respectively. Drainage density gives 

an indirect measure of runoff conditions and terrain 

dissection, which has a great significance in 

conditioning the terrain for the landslide process 

(Sarkar and Kanungo, 2004; Saha et al., 2005; 

Yesilnacar and Topal, 2005; Vijith et al., 2007), and 

the drainage density calculated for the study area 

shows variation in length of drainages in unit area 

ranging from 211 m/km2 to 4,343 m/km2 (Fig. 4i). 

The distance from drainages (Fig. 4j) calculated in the 

study area ranges from 0 to 752 m, which indicates 

well developed, closely spaced drainage networks in 

mountainous area. The lineaments represent the plane 

of weakness on the surface, where the strength of 

slope material has been reduced, eventually resulting 

in slope failure. In the present study, lineament 

density and distance from lineaments were prepared 

and are shown in Figure 4k and Figure 4l. 
 

 
Figure 4. Thematic data layers: (g) plan curvature; (h) profile curvature; (i) drainage density; (j) distance from drainages; 

(k) lineament density; (l) distance from lineaments. 

 

3.2 Landslide susceptibility assessment techniques 

 

3.2.1 Information Value (InfoVal) 

 

The landslide susceptibility assessment was 

fulfilled using a data-driven approach: the 

Information Value Method (van Westen, 1997; Wu 

et al., 2000; Zezere, 2002). The Information Value 

Method (InfoVal) is a simple indirect statistical 

approach that has the advantage of assessing landslide 

susceptibility in an unbiased way. The method allows 

the quantified prediction of susceptibility by means of 

a score, even on terrain units that are not yet affected 

by landslide occurrence. Each instability factor is 

crossed with the landslide distribution, and weighting 

values based on landslide densities are computed for 

each parameter class, as it happens with all bivariate 

statistical methods. The method implies a prior 

definition of terrain units and the selection of a set of 

instability factors. In this method, the information 

value for each parameter class is determined by the 

following equation Wi: 

 

𝑊𝑖 =  log (Densclass/Desnsmap)
= log [(𝑁𝑝𝑖𝑥(𝑆𝑖)/𝑁𝑝𝑖𝑥(𝑁𝑖))

/ (∑ 𝑁𝑝𝑖𝑥(𝑆𝑖)/(∑ 𝑁𝑝𝑖𝑥(𝑁𝑖))

𝑛

𝑖=1

𝑛

𝑖=1

] 

 (1) 
 

where Wi is the weight for the ith class of a particular 

thematic map (i.e. plateau or side-slope plateau, or 

escarpment in the thematic map ‘Geomorphology’), 

Densclass is the failure density in the factor class, 

Densmap is the failure density within the whole study 

area, Npix(Si) is the number of failed pixels in the ith 

factor class, Npix(Ni) is the number of pixels in the ith 

factor class, and n is the number of classes in the 

thematic map. 

 

3.2.2 Multiple Logistic Regression (MLR)  

 

Logistic regression involves a multivariate 

regression between a dependent variable and several 

independent variables (Atkinson and Massari, 1998; 

Hosmer and Lemeshow, 2000). Logistic regression is 

worthwhile to predict the presence or absence of a 

characteristic or outcome based on the values of 

predictor variables. In the case of landslide 

susceptibility mapping, the purpose of logistic 

regression is to find the best-fitting model to describe 

the relationship between the presence or absence of a 

landslide (the dependent variable) and a set of 

independent parameters (Bhai et al., 2010, 2011; 

Nandi and Shakoor, 2010; Akgun, 2012; Devkota 

et al., 2013). A binary dependent variable was used to 

represent the presence or absence of a landslide. 

Coefficients determined in the logistic regression can 

be used to estimate ratios for each of the independent 

variables. The logistic model representing the 
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maximum likelihood regression model can be 

expressed in its simplest form as 

 

P =
1

1 +  𝑒−𝑧    
 

 (2) 
 

where P is the estimated probability of an event 

occurring. Because Z (linear logistic model) can vary 

from −∞ to +∞, the probability varies from 0 to 1 as 

an S-shaped curve. Parameter Z is defined as 

 

Z=𝐵0+𝐵1 𝑋1+𝐵2 𝑋2+ … + 𝐵𝑛𝑋𝑛 

 (3) 
 

where B0 is the intercept and n is the number of 

independent variables, Bi (i = 0, 1, 2, …, n) is the 

slope coefficient, and Xi (i = 0, 1, 2, …, n) is the 

independent variable. Based on equation (2) and 

equation (3), the logistic regression can be written in 

the following extended form:  

 

Logit (P) =
1

1 + 𝑒𝐵0+𝐵1𝑋1+𝐵2𝑋2+⋯+𝐵𝑛𝑋𝑛 
 

 (4) 
 

 

4 Analysis of the role of terrain conditioning 

factors 

 

In order to assess the contribution of each geo-

environmental variables in conditioning the terrain 

failure, landslide initiation locations kept for the LSZ 

map preparation were crossed with each variable, and 

the analysis was done in bivariate and multivariate 

statistical methods. Unlike the developed regions, the 

study area lacks detailed database of terrain features 

and historic landslide details. In bivariate analysis, 

InfoVal method and in multivariate analysis, multiple 

logistic regression (MLR) modelling techniques were 

used to assess the role of each terrain conditioning 

factor and also to identify the suitability of the 

landslide susceptibility assessment methodology in 

terrains similar to the study area. The analysis was 

initiated with converting all the data layers into raster 

format and also the continuous variables to discrete 

variables by the expert classification criteria to use in 

the InfoVal analysis technique. In the bivariate 

statistical analysis, all the independent variables used 

are either classified into different classes or into two 

classes for analysing each class’s role in making the 

area susceptible to landslide. Using equation (1), 

weights of individual feature class were calculated by 

the number of landslide pixels falling in each class of 

the thematic data layers. In MLR, using the statistical 

software SPSS (version 11.5), pervious landslide 

locations are kept as the dependent variable (presence 

and absence) to execute the calculations. The 

calculated weights for individual feature classes are 

presented in Table 1, and in each case, the higher the 

derived weight values of predictive parameters classes 

are, the more contribution is attributed towards the 

making the terrain susceptible to landslides. This 

criterion is common to weights derived through 

InfoVal and MLR techniques. Hence, weight values 

of each parameter classes, which indicate the role of 

each feature, are detailed below. 

 

Table 1. InfoVal weights and logistic regression coefficients of the terrain conditioning factors 
 

 

 

 

 Feature / Class 
Landslide  

(Pixel) 

Area 

(Pixel) 

InfoVal weight  

(ln) 

MLR weight 

(β) 

Geomorphology 

Plateau  0 18,458 -3.0* -11.237 

Side-slope plateau 14 60,303 0.512 5.510 

Denudational hill 32 103,737 0.797 8.094 

Escarpment 0 67,640 -3.0* 0# 

Denudational slope 2 107,278 -2.0 6.649 

Valley fill 6 64,408 -0.400 0# 

Residual mounds 0 8,781 -3.0* 0# 

Pediment  0 17,338 -3.0* 0# 

Water body 0 393 -3.0* 0# 

Land use 

Rocky outcrops 0 8,608 -3.0* -1.92 

Grass land   3 21,398 0.008 0# 

Bushes and shrubs   9 30,188 0.763 0# 

Tea plantation 1 18,825 -0.961 0.782 

Rubber plantation 31 268,773 -0.186 0# 

Crop land 0 1,789 -3.0* 0# 

Cleared/barren area   10 37,416 0.653 0# 

Built-up land 0 70 -3.0* 0# 

Water body 0 393 -3.0* 0# 

Soil Thickness 

0–1 m 7 69,286 -0.319 -5.113 

1–2.5 m 40 199,009 0.368 -4.787 

2.5–3.5 m 4 101,885 -1.264 -4.968 

> 3.5 m 3 17,280 0.222 0# 
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* arbitrary value as filler for In 
# arbitrary value as filler for β 

Constant for logistic regression analysis -28.723 

 

The role of geomorphology is very important in 

conditioning the terrain for denudational processes of 

the area. Geomorphological features such as side 

slope plateau (0.512) and denudational hills (0.797) 

are showing maximum InfoVal weights while in the 

MLR analysis maximum influence is shown by the 

denudational hill (8.094) followed by denudational 

slope, escarpments and side slope plateau, which 

makes the terrain more susceptible to landslide. The 

analysis of influence of land use/land cover type in 

the area towards conditioning the terrain for landside 

through the InfoVal technique shows the maximum 

influence of the class bushes and shrubs (0.763) 

followed by cleared/barren area (0.653). The tabulated 

data of landslide distribution in each class show that 

the maximum landslide occurrence (57% of the total 

landslides) was observed in rubber plantation but has 

shown minimum weightage in the analysis. This is 

due to the fact that the majority of the area (69%) is 

covered with rubber plantations, and while 

considering the area ratio with number ratio, the effect 

has been brought into a very low value. The classified 

soil thickness map indicates the maximum values in 

the class range between 1 and 2.5 m in the InfoVal 

analysis whereas the multiple logistic regression 

coefficient for the soil thickness classes shows 

 Feature / Class 
Landslide  

(Pixel) 

Area 

(Pixel) 

InfoVal weight  

(ln) 

MLR 

weight (β) 

Slope 

0–50 2 74,203 -1.640 -1.594 

5–100 2 41,107 -1.049 -0.660 

10–150 2 50,952 -1.264 -0.497 

15–200 7 56,791 -0.120 -0.004 

20–250 16 53,984 0.757 1.544 

25–300 9 44,173 0.382 1.487 

30–350 4 30,997 -0.074 -2.150 

35–400 3 19,768 0.087 0.540 

> 400 9 15,485 1.430 0# 

Aspect  

(0.003) 

Flat 1 46,426 -1.864  

N 9 29,729 0.778  

NE 2 43,241 -1.100  

E 3 34,333 -0.464  

SE 3 33,943 -0.452  

S 4 43,540 -0.414  

SW 11 76,299 0.036  

W 10 51,038 0.343  

NW 11 28,911 1.006  

Relative Relief  

(0.008) 

0–50 m/km2 0 5,403 -3.0*  

50–100 m/km2 0 46,972 -3.0*  

100–200 m/km2 1 96,473 -2.595  

200–300 m/km2 11 71,828 0.096  

300–400 m/km2 20 80,814 0.576  

400–500 m/km2 12 52,808 0.491  

> 500 m/km2 10 33,220 0.772  

Plan Curvature  

(-1.471) 

Concave 15 210,426 -0.667  

Flat 36 168,220 0.431  

Convex 3 8,814 0.895  

Profile Curvature  

(-1.091) 

Concave 37 216,400 0.207  

Flat 14 145,762 -0.369  

Convex 3 25,298 -0.158  

Drainage Density  

(10.833) 

0–2,000 m/km2 (low) 43 269,458 0.138  

2,000–3,000 m/km2 (moderate)  11 101,392 -0.247 7.587 

> 3,000 m/km2 (high) 0 16,084 -3.0* 0# 

Distance from 

Drainages 

0–100 m 22 208,906 -0.277 7.355 

100–200 m  26 117,276 0.466 9.542 

200–300 m 6 45,653 -0.056 7.706 

300–400 m 0 11,475 -3.0* -12.807 

> 400 m 0 3,624 -3.0* 0# 

Lineament Density 

0–1,500 m/km2 (low) 25 218,078 -0.192 4.725 

1,500–3,000 m/km2 (moderate) 29 153,951 0.303 4.578 

> 3,000 m/km2 (high) 0 14,905 -3.0* 0# 

Distance from 

Lineaments 

0–100 m 7 80,975 -0.474 -0.235 

100–200 m 10 69,288 0.037 1.028 

200–300 m 15 59,410 0.596 0.088 

300–400 m 10 46,820 0.429 0.906 

> 400 m 12 130,967 -0.416 0# 
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negative values, in which the maximum number of 

landslide occurrence was noticed in the class 1–2.5 m. 

Five digital elevation derivatives were used to analyse 

individually to identify the contribution of each of the 

parameters in making the terrain susceptible to 

landslide. The assessment of InfoVal weights shows 

that number of landslides occurred in the slope range 

of 20–25°, which is considered to be a critical range in 

the terrain. In the InfoVal method, the aspect was 

classified into nine discrete classes, and in MLR it 

was considered as a continuous variable. The slope 

directional classes, N, SW, W and NW, are showing 

high values in InfoVal analysis. From the MLR 

analysis, the impact factor of aspect was derived as 

0.003. In the case of relative relief, more number of 

landslide occurrences was reported above the relative 

relief class > 300 m/km2, and all the class ranges 

above this show the high value of InfoVal weight. At 

the same time, in MLR, a value of 0.008 was derived 

as the weight factor for relative relief. The 

relationship between terrain curvatures (plan and 

profile curvatures) and landslide occurrence was also 

assessed, but this factor had not much influence over 

landslide occurrence in the region and, therefore, was 

omitted from the further analysis. 

In the study area, most of the landslide initiation 

locations were observed in association with the 

mountain streams. In order to rate the influence of 

drainages on landslide occurrence, both the drainage 

density and distance from drainages were considered 

in the analysis. In the InfoVal and MLR analysis, a 

larger number of landslide occurrences were noticed 

in the lower drainage density zone and a distance 

below 200 m from drainages. The weight values for 

low drainage density zones are 0.138 and 10.833, 

respectively, for InfoVal and MLR analysis. At the 

same time, the variable distance from drainages 

showed maximum InfoVal rating of 0.466 in the 

range of 100–200 m. The weight factor derived by the 

MLR analysis also shows maximum value (9.542) in 

the same class as those shown by the InfoVal 

analysis. The relationship between lineament density 

and the previous landslide locations indicates that the 

low and moderate lineament density zones contain 

whole the past landslides which occurred in the area 

with high InfoVal weight for medium landslide 

density class (0.303), while in the MLR weight 

maximum value was observed in the low density 

(4.725) class followed by medium density (4.578). In 

the case of landslide occurrence points with distance 

from lineaments, the maximum correlation was 

observed in the class range between 200–300 m and 

300–400 m in the InfoVal analysis (0.596 and 0.429, 

respectively), and that in the MLR analysis varies to 

100–200 m (1.028) followed by 300–400 m (0.906). 
 

 

5 Results and discussion 

 

To evaluate the contribution of each factor 

towards landslide susceptibility, the existing landslide 

distribution data layer (54 numbers of landslides) has 

been compared to various thematic data layers 

separately. The number of landslide pixels falling in 

each class of the thematic data layers has been 

recorded and weights have been calculated on the 

basis of InfoVal and multiple logistic regression 

(MLR) techniques. Weighted thematic maps in raster 

format were integrated in the raster calculator using 

the map algebra given in equations (5) and (6) and 

used for the preparation of landslide susceptibility 

index (LSI) maps. 

 

𝐿𝑆𝐼𝐼𝑛𝑓𝑜𝑉𝑎𝑙 = 𝐺𝑒𝑜𝑚𝐼𝑊 + 𝐿𝑈𝐿𝐶𝐼𝑊 + 𝑆𝑇𝑘𝐼𝑊 + 𝑆𝑙𝑝𝐼𝑊

+ 𝐴𝑠𝑝𝐼𝑊 + 𝑅𝑃𝐼𝑊 + 𝑃𝑙𝐶𝐼𝑊

+ 𝑃𝑟𝑜𝑓𝐶𝐼𝑊 + 𝐷𝑟𝐷𝑒𝑛𝐼𝑊

+ 𝐷𝑟𝐷𝑖𝑠𝑡𝐼𝑊 

 (5) 
 

𝐿𝑆𝐼𝑀𝐿𝑅 = −28.723 + 𝐺𝑒𝑜𝑚𝑀𝐿𝑅 + 𝐿𝑈𝐿𝐶𝑀𝐿𝑅

+ 𝑆𝑇𝑘𝑀𝐿𝑅 + 𝑆𝑙𝑝𝑀𝐿𝑅 + 𝐴𝑠𝑝𝑥0.03
+ 𝑅𝑅𝑥0.008 + 𝑃𝑙𝐶𝑥 − 1.471
+ 𝑃𝑟𝑜𝑓𝐶𝑥 − 1.091 + 𝐷𝑟𝐷𝑒𝑛𝑀𝐿𝑅

+ 𝐿𝑚𝐷𝑒𝑛𝑀𝐿𝑅 + 𝐿𝑚𝐷𝑖𝑠𝑡𝑀𝐿𝑅  

 (6) 
 

where Geom is geomorphology, LULC is land 

use/land cover, STk is soil thickness, Slp is slope, Asp 

is aspect, RR is relative relief, PlC is plan curvature, 

ProfC is profile curvature, DrDen is drainage density, 

DrDist is distance from drainages, LmDen is 

lineament density, LmDist is distance from 

lineaments, IW is InfoVal weights, MLR is MLR 

coefficients, and -28.723 is a constant. Thus, two 

landslide susceptibility index maps representing the 

InfoVal and MLR techniques have been produced. 

The prepared landslide susceptibility index map 

for InfoVal technique is found to be varying between 

-16.86 and 7.46. At the same time, the landslide 

susceptibility index map generated through the MLR 

technique shows minimum and maximum value 

ranges between -46.67 and 14.35. With the higher LSI 

value susceptibility to landslide will be high while 

negative and zero values indicate nil to low landslide 

initiation susceptibility. In order to determine and 

identify the spatial distribution of different landslide 

susceptibility zones (LSZ), both the LSI maps were 

segmented into five representative classes. The 

segmentation was done by analysing the overall 

distribution pattern, shape of the cumulative 

frequency curve of susceptibility index values and 

applying the field knowledge and expert opinion. Five 

landslide susceptibility classes representing stable, 

low, moderate, high and critical landslide susceptible 

zones (Fig. 5) were derived, and the details are 

provided in Table 2. 

The critical landslide susceptible zone occupies 

5.54% and 8.23% of the total area in LSZ maps 

prepared by InfoVal and MLR techniques, 

respectively, which denotes the influence of the side 

slope plateau, denudational hill, slope more than 250 

and high relative relief. Highly susceptible zones 

occupy 26.69% and 19.2% of the total area, 

respectively, for InfoVal and MLR susceptible maps. 

These zones are characterised by the area with slope 

> 250, relative relief > 300 m/km2, denudational hills 
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and denudational slopes. Other susceptible zones like 

moderate and low occupy 21.67%, 17.27% and 

22.43%, 15.86% of the total area. In this, moderate 

susceptibility zones also need careful observation and 

proper planning while performing any developmental 

activities. The stable area occupies 28.83% in the LSZ 

map of InfoVal and 34.18% in LSZ map of MLR 

technique. 
 

 
Figure 5. Classified landslide susceptibility zonation (LSZ) maps with validation group of landslides: (a) InfoVal technique 

and (b) multiple logistic regression (MLR) technique. 

 
Table 2. Area distribution of landslide susceptibility zones (LSZ) with percentage distribution of the validation of group of 

landslides in each zone. 
 

 

 

 

 

 

 

 

 

 

 

 

 

The performance and predictive capacity of the 

landslide susceptibility zonation maps were tested 

using the estimation set of landslide location 

(54 numbers) used for the preparation of landslide 

susceptibility zonation maps (success rate curves) and 

a set of validation group of landslides (26 numbers) 

kept to check the predictive power of landslide 

susceptibility zonation maps (prediction rate curves) 

and the suitability of methods in the area. The success 

rate curve explains how well the model and the factor 

predict the landslides, and the prediction rate curve 

indicates the success rate and predictive power of the 

model in terms of accuracy. In order to estimate the 

success rate and prediction rate of the models, 

classified final landslide susceptibility maps were 

crossed with the estimation and validation group of 

landslides separately. Based on a given LSZ map, the 

success and prediction rate curves (Lu and An, 1999; 

Remondo et al., 2003; Vijith and Madhu, 2007), 

which represent the cumulative percentage of 

landslide occurrence in various susceptibility classes 

in (y-axis) against the cumulative percentage of the 

area of the susceptibility classes in (x-axis), were 

generated. The area under a curve (AUC) was used to 

measure the prediction accuracy (success rate) of the 

model qualitatively (Fig. 6a). 

The area ratio for the LSZ created by InfoVal 

techniques is 0.8411 and the success rate of the 

models is 84.11%. The area ratio calculated for LSZ 

map generated by multiple logistic regression (MLR) 

technique is 0.6865, and the success rate of the model 

is 68.65%. It was also noted that in the success rate 

curve of InfoVal derived susceptibility map the stable 

area is devoid of landslide occurrence and the low 

landslide susceptibility zone contains only 1.85% of 

the total landslide (1 out of 54). Similarly, in the case 

of susceptibility map prepared by MLR method, 

stable zone contains 5.55% (3 out of 54) of landslide 

occurrence and low landslide susceptibility zone 

contain 9.25% (5 out of 54) of the total landslide used 

for the preparation of LSZ maps. This can be 

considered as the first-order error, and the effect will 

be very less and hence the result is acceptable. The 

result indicates the usability of InfoVal technique over 

the MLR method in LSZ mapping in this region. 

Landslide 

Susceptibility 

Class 

Landslide 

Susceptibility 

Index Range 

InfoVal MLR 

% of Validation 

group of 

landslides 

 

InfoVal and 

MLR 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 
InfoVal MLR 

Stable -16 – -6 44.69 28.83 52.97 34.18 0 15.38 

Low -6 – -3 26.76 17.27 24.58 15.86 3.85 11.54 

Medium -3–0 33.58 21.67 34.77 22.43 23.08 11.54 

High 0–3 41.37 26.69 29.78 19.21 46.15 50.00 

Severe > 3 8.59 5.54 12.89 8.32 26.92 11.54 

  154.99  154.99    
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Figure 6. Cumulative frequency diagrams showing percentage of study area classified as susceptible (x-axis) in cumulative 

per cent of landslide (validation group) occurrence (y-axis): (a) success rate curves; (b) prediction rate curve. 

 

While preparing the prediction rate curve 

(Figure 6b), it was noted that, the maximum number 

of validation group of the landslide was occurring in 

the highly susceptible zone (12 and 13 numbers of 

landslide events respectively for InfoVal and MLR 

maps) followed by severe and moderate susceptibility 

zones. At the same time, the stable landslide 

susceptibility class in the MLR map shows the 

presence of 15% of the validation group of landslides, 

which was considered as wrongly classified. The 

graphs indicate the capability of the two models to 

classify the terrain based on the landslide 

susceptibility and classify the terrain based on 

proneness to landslide. From the graph, two cases of 

landslide prediction condition were evaluated for both 

the LSZ maps. In the first condition, 15% of high 

landslide susceptible area is capable of 

accommodating 45% and 30% of total validation 

group of landslides. In the second condition, 50% of 

the landslide susceptible areas are able to 

accommodate 94% and 72% of total validation group 

of landslides that occurred in the area respectively for 

LSZ map produced by InfoVal and MLR techniques. 

In the case of prediction rate curve prepared using the 

validation group of landslides, the area ratio (area 

under curve) for the LSZ created by InfoVal 

techniques is 0.826 and the success rate of the models 

is 82.60%. The area ratio calculated for LSZ map 

generated by multiple logistic regression (MLR) 

technique is 0.648 and the success rate of the model is 

64.80%. The first-order errors of the models were 

assessed quantitatively by counting the occurrence of 

landslide events in stable and low landslide 

susceptibility zones. It was observed that, in the 

InfoVal derived susceptibility map, the stable areas 

are devoid of landslide occurrence and the low 

landslide susceptibility zone comprise only 3.85% of 

the total landslides (1 out of 26). In the case of LSZ 

prepared by MLR method, stable zone accounts for 

15.38% (4 out of 26) of landslide occurrence and low 

landslide susceptibility zone accounts for 11.54% (3 

out of 26) of the total landslide used for the validation 

of the landslide susceptibility zonation map. The 

comparison of the AUC curve and quantitative 

accuracy of the model shows that the LSZ map 

produced by the InfoVal technique shows a generally 

more acceptable accuracy compared to LSZ generated 

by MLR techniques and is supported by the first order 

error computed for both the susceptibility maps. 

 

 

6 Conclusions 

 

In this study, it was attempted to evaluate the 

best suitable methodology for the assessment of 

shallow landslide initiation susceptibility in the 

Western Ghats, India, by comparing the bivariate 

(InfoVal) with multivariate (multiple logistic 

regression) statistical techniques. Both the techniques 

used the same dependant and independent variables to 

analyse and establish the relative importance of 

landslide conditioning terrain factors. The assessment 

of statistical importance of landslide conditioning 

terrain variable and its classes carried out using the 

different techniques, and it was found that variables 

such as geomorphology, land use, soil thickness, 

slope, relative relief, drainage density, distance from 

drainages and lineament density are influencing 

landslide susceptibility of the region under study. It 

was also noted that among the crucial variables 

identified, selective classes such as side slope plateau 

and denudational hills with slope greater than 20°, soil 

thickness less than 2.5 m, high relative relief, low to 

moderate drainage and lineament density, and 

http://dx.doi.org/10.5755/j01.erem.70.4.8510
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distance near to drainages were marked with a 

maximum incidence of landslides and have high 

influence in the landslide susceptibility zonation maps 

prepared.  

The LSZ maps generated by InfoVal and MLR 

techniques show various dimensions and spatial 

pattern of different landslide susceptibility zones, in 

which the severe and high susceptibility zones occupy 

5.54%, 26.69% and 8.32%, 19.21% of the total area, 

respectively for InfoVal and MLR based LSZ maps. 

The success rate of the proposed models and 

validation of the LSZ maps produced were assessed 

through the area under curve technique. In both maps 

produced, the InfoVal method dominates over the 

MLR techniques with 84.11% success rate and 

82.60 % of accuracy. Landslide susceptibility 

zonation map produced through the MLR method 

shows 68.65% and 64.80%, respectively for success 

rate and accuracy. The findings of the study coupled 

with the assessment of first order errors of the models 

indicate the dominated applicability, suitability and 

reliability of the bivariate statistical technique over 

the multivariate techniques in producing a landslide 

susceptibility zonation maps and its replicability in 

terrains having similar geo-environmental and 

climatic conditions, where the data collection is 

difficult and historical data records are scarce. 
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Siekiant nustatyti nuošliaužų jautrumo įvertinimo statistinių metodų tinkamumą pritaikius 

geografinės informacijos sistemas (GIS) tuose regionuose, kuriuose duomenis gauti sudėtinga, 

buvo naudojami informacinės vertės (InfoVal) ir daugianarės logistinės regresijos (MLR) metodai, 

pagrįsti dviejų ir daugiau kintamųjų statistine analize, paviršinių nuošliaužų pradžios jautrumui 

pasirinktose vandenskyrose Vakarų Gatuose, Keraloje, Indijoje, nustatyti. Buvo tirti šie skirtingi 

nuošliaužas lemiantys vietovės kintamieji: geomorfologija, žemės naudojimas ir žemės danga, 

dirvožemio storis, nuolydis, kryptis, santykinis reljefas, plano kreivumas, profilio kreivumas, 

drenažo tankumas, atstumas nuo drenažų ir kt. Nuošliaužų jautrumo indekso (LSI) žemėlapiai 

buvo sukurti integruojant įtaką darančius veiksnius; išskirtos penkios nuošliaužų jautrumo zonos 

(LSZ) koreliuojant nuošliaužų jautrumo indeksą su bendromis vietovės sąlygomis. InfoVal ir MLR 

metodais sukurtuose jautrumo žemėlapiuose plotas po sėkmės dydžių kreivėmis (angl. area under 

success rate curves, AUC) parodė atitinkamai 84,11 % ir 68,65 % reikšmes. Prognozuojamo 

dydžio kreivės rodo gerą/vidutinę koreliaciją tarp nuošliaužų pasiskirstymo rezultatus 

patvirtinančios grupės ir LSZ žemėlapių su AUC reikšmėmis, atitinkamai nuo 0,648 iki 0,826 

MLR ir InfoVal metodais sukurtiems LSZ žemėlapiams. Atsižvelgiant į tai, kas geriausiai tinka, ir 

į modelių tinkamumą tyrimo vietoje kiekybinio spėjimo tikslumu, LSZ žemėlapiai sukurti InfoVal 

metodu rodo didesnį tikslumą nei sukurtieji MLR metodu (82,60 %), geriau atspindi tikrovę, kai 

lyginama praktikoje. Todėl InfoVal metodas laikomas tinkamiausiu modeliu nuošliaužų jautrumui 

tose vietovėse, kurios panašios į šiame tyrime tirtą vietovę, matuoti. Vietovei sukurtas LSZ 

žemėlapis gali būti naudojamas regioninio planavimo ir vertinimo procesuose, įtraukiant 

apibendrintas kritulių sąlygas toje teritorijoje. 

Raktiniai žodžiai: Vakarų Gatai, paviršinės nuošliaužos, informacinė vertė, daugianarė 

logistinė regresija, jautrumo įvertinimas. 


