Electrical Resistivity Imaging of a Thin Clayey Aquitard Developed on Basement Rocks in Parts of Adekunle Ajasin University Campus, Akungba-Akoko, South-western Nigeria

Muslim B Aminu

Abstract


In this study, 2-dimensional electrical resistivity surveying has been used to reveal the nature and development of a thin clayey aquitard on basement complex rocks of the Adekunle Ajasin University campus, Akungba-Akoko south-western Nigeria. The aim was to evaluate the occurrence, geometry and groundwater viability of this clayey aquitard as an alternative source of water supply on the Campus. Prior, a hand-dug well, which supplied moderate volumes of water all year round, had been abstracting water from this aquitard.

Three east-west geo-electric traverses were surveyed using the dipole-dipole array configuration with an electrode separation of 5 m and a maximum dipole length of 45 m. Each of the three traverses was 60 m long. The observed field data were inverted for subsurface 2D resistivity structure using a commercially available 2.5D finite element modelling inversion software.

The clayey aquitard is imaged to exist as low resistivity response patterns which have developed in elongated trough-like depressions created as a result of deep weathering of the feldspar and amphibolite-rich sections of the basement rocks of the area. This clayey layer reaches a thickness of 10 m at the southern end of the survey and in some sections is compartmentalised into segments by basement rocks which have better resisted weathering. Where the topographic slope of the ground surface is low enough as to allow the accumulation of run-off, the clayey aquitard develops into visible marshy swamps. Although, clayey aquitards of this nature supply water at low rates, their capacity to store high volumes and to be available all-year-round could prove essential to ameliorating acute water shortages experienced in the area during the dry season.

DOI: http://dx.doi.org/10.5755/j01.erem.71.1.9016


Keywords


Akungba-Akoko, clayey aquitard, electrical resistivity imaging, deep weathering troughs

Full Text: Aminu 71(1) 2015

Print ISSN: 1392-1649
Online ISSN: 2029-2139