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Performance and sensitivity of freely available equal resolution space-borne digital elevation model derivatives 
in landslide susceptibility analysis were carried out in a selected part of the Western Ghats, India. ASTER and 
SRTM digital elevation models having a 30-m resolution were used to derive the terrain variables such as slope, 
aspect, relative relief, slope length and steepness, curvature, landform and stream networks. Most of the varia-
bles showed spatial variability in distribution pattern, which affects the results of geo-environmental processes 
analysed. Sensitivity and performance of each variable derived from the digital elevation models were assessed 
by preparing landslide susceptibility index (LSI) maps using the Information Value (InfoVal) technique and were 
validated through receiver operator characteristics (ROC) curve analysis. LSI maps generated point towards 
the capability of the SRTM digital elevation model to correctly generate the terrain variables than the ASTER 
elevation surface, by giving the accuracy of LSI maps greater than those produced using the ASTER-derived 
parameters (0.77 and 0.72 for SRTM; 0.67 and 0.65 for ASTER). The results of the present study suggest that 
the SRTM digital elevation data are more sensitive and suitable for terrain analysis and earth surface process 
modelling than the ASTER elevation data sets, although both possess equal resolutions.  

Keywords: ASTER, SRTM, sensitivity, landslide susceptibility, ROC, Western Ghats.

Introduction
The research related to the earth surface process he-
avily depends on digital elevation models (DEM) from 
various sources and resolutions. Conventionally, the 
elevation information was often extracted from topo-
graphical sheets, in which the elevation is depicted 
as contour lines. Most topographical sheets are fo-
und to be old and not updated. Moreover, the accura-
cy of the derived elevation surfaces depends on the 
capacity and expertise of the analyst, who converts 
the contour lines into the digital format using geogra-
phical information systems, which seems to be time 
consuming and contains non-rectifiable errors. This 
has been overcome by the increased availability of 
moderate to high resolution and real near time digital 
elevation models available from space-borne sour-
ces. The most commonly used, moderate resolution 
digital elevation models are from the shuttle radar 
topography mission (SRTM) with a 90-m resolution 
and advanced space-borne thermal emission and re-
flection radiometer (ASTER) with a 30-m resolution. A 
large number of studies have been carried out using 
both digital elevation models in different aspects of 
the earth and environmental sciences, which is not 
only limited to hydrological modelling but also in dis-
aster management, terrain analysis and surface pro-
cess modelling (Kamp, 2005, Huggel et al., 2008, Hen-
gal et al.,  2010, 2011, Cook et al.,  2012, Frey and Paul, 
2012, Śleszyński 2012, Wang et al., 2012, Pan et al., 

2013, Jing et al., 2014, Akbari et al., 2015, Ouerghi et 
al., 2015). Besides this, numerous researchers have 
compared both the DEMs and their performance in di-
fferent terrain conditions by resampling the SRTM or 
ASTER data into a base resolution (Hilton et al., 2003, 
Kervyn et al., 2008, Hirt et al., 2010, Heras et al., 2012, 
Mukherjee et al., 2013, Rawat et al., 2013, Jozsa et 
al., 2014, Dewitt et al., 2015). The comparison has fa-
cilitated the complementary use of SRTM and ASTER 
data to overcome the limitations of both data sets. At 
the end of the year 2014, NASA released the enhanced 
SRTM data with a 30-m resolution for the whole glo-
be, which facilitated the geoscientist to make much 
better representations of surface phenomena with 
increased accuracy (NASA, 2014, USGS, 2015). In the 
latest version of SRTM data, most of the voids are fil-
led with the available ASTER elevation datasets. This 
has made the SRTM 30-m data a unique, high resolu-
tion, errorless digital elevation model, which is ready 
to use in any application.    
Although a number of studies have reported about the 
sensitivity and performance of digital elevation model 
derivatives in hydrological and terrain analysis, all are 
based on the previously available moderate resoluti-
on (90 m) SRTM and ASTER (30 m) data. Resampling 
techniques used to make the resolution uniform will 
smoothen the elevation values based on the tech-
nique used (bilinear, cubic or bi-cubic) with a defined 
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window size. This will reduce the sensitivity of the ele-
vation surfaces to correctly deriving the variables and 
give an averaged parameter outputs (Wolock and Price, 
1994, Dixon and Earls, 2009, Zhang et al., 1999, Claes-
sens et al., 2005, Sørensen and Seibert, 2007, Wu et al., 
2008, Tan et al., 2015, Zhang et al., 2015). The present 
study was framed with the objective to analyse the sen-
sitivity and determine the best suitable digital elevation 
data (30-m ASTER or SRTM) derived terrain parameters 
in landslide susceptibility zonation (LSZ) mapping in hi-
ghly undulating terrain in the Western Ghats.  

Materials and method
Study area

The upper catchment region of the River Manimala, 
which covers an area of 99 km2, between north latitu-
des 9° 30′ to 9° 40′ and east longitudes 76° 50′ to77° 
00′, considered to be the transition zone between the 
Grater Periyar Plateau on the eastern side and a steep 
sloping margin on the western side (Fig. 1). The hi-
ghest elevation in the area is > 1300 m above the sea 

level (covers portion of the Grater Periyar Plateau) and 
the lowest is < 80 m of valley flats in the foothill regi-
ons. Geologically, the area forms a part of the South 
Indian Granulite terrain and most of the area covered 
by charnockites, followed by quartzite and dolorites. 
Soil formation in the area is very low, which is contro-
lled by the lithology and the slope of the terrain. Soil 
depth is found to be varied from a few centimetres 
to less than 2 m, with predominating lateritic soils. 
Geomorphologically, the area is classified into 5 ma-
jor features such as plateau, escarpments, denudati-
onal-structural hills, denudational slope and valley fill 
with a varying degree of elevation and slope. The area 
shows a mosaic land use pattern with various land co-
ver types, such as plantations (tea, rubber and teak), 
mixed agricultural lands (pine apple, pepper, etc.), 
open mixed forests, grasslands and open scrublands.  
The area is reported to be witnessing rainfall-induced 
repeated landslides and soil slips in the highly sloping 
terrains, where intense agricultural activity is present. 
The study area receives 2 monsoon rainfall seasons 
(SW and NE monsoons) with the annual average rain-
fall more than 3,500 mm.   

Fig. 1
Study area location 
map

Methodology
Preparation of a landslide susceptibility zonation 
(LSZ) map is considered as the basic and most impor-
tant step in mitigating the landslide related hazards 

and framing new development plans for the areas 
considered to be susceptible to landslides (Brenning, 
2005, Kanungo et al., 2009, Kouli et al., 2009, Yalcin et 
al., 2011, Althuwaynee et al., 2012, Pourghasemi et 
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al., 2013, Demir et al., 2015). In LSZ mapping, terrain 
variables that are considered to be making the ter-
rain susceptible to landslide are derived from digital 
elevation models. The present study makes a first-
hand assessment of sensitivity and suitability of equal 
resolution digital elevation (30 m ASTER and SRTM) 
derived terrain parameters in landslide susceptibility 
assessment. The sensitivity of digital elevation mo-
dels in deriving terrain variables was also determi-
ned through parameter characterization. Then, the 
landslide susceptibility zonation maps were prepared 
using the terrain parameters that are derived from 
both the DEMs to determine the best suitability and 
its influence over the landslide susceptibility mapping.  

Landslide susceptibility mapping was carried out on 
the scale of 1:50,000, using terrain variables (slope, 
aspect, relative relief, slope length and steepness, 
curvature, landforms), stream networks (drainage 
density) derived from digital elevation models and the 
normalised difference vegetation index (NDVI) based 
land use / land cover and fracture density was derived 
from a Landsat image. The majority of the variables 
used in the analysis were derived from the digital ele-
vation models in order to analyse the sensitivity of 
LSZ maps. Information and database regarding the 
palaeoslide locations are considered as the most cru-
cial information needed to generate the LSZ map of 
any area (Ayalew et al., 2004, Yilmaz, 2009, Pourgha-
semi et al., 2014, Regmi et al., 2014, Eker et al., 2015). 
In the present analysis, 52 landslide initiation locati-
ons were mapped from the field. Random selection 
criteria were used to divide the whole data into 2 gro-
ups to avoid the biases of the analyst in selecting the 
landslides to be used for the generation of weights of 
each thematic maps and validation of final LSZ map. 
Among them, 34 landslides were used for weight de-
termination and 18 landslides were kept to validate 
the LSZ maps using the receiver operating charac-
teristic (ROC) curve analysis technique. A bivariate 
statistical analysis technique known as information 
value (InfoVal) was used for the landslide susceptibi-
lity assessment (van Westen, 1997, Jade and Sarkar, 
1993, Yin and Yan, 1988, Wu et al., 2000, Zezere, 2002, 
Vijith et al., 2009, Balasubramani and Kumaraswamy, 
2013). The InfoVal method of landslide susceptibili-
ty analysis works on the basis of cross comparison 

of landslide density and terrain parameter density, 
which is straightforward, unbiased and purely a da-
ta-driven technique. This also allows the analyst to in-
corporate the field expertise in parameter generation 
and its segmentation, which support the selection of 
proper instability factors to be involved in the landsli-
de susceptibility analysis.  InfoVal works on individual 
classes in the variable analysed like other bivariate 
statistical techniques and returns a value which de-
termines the role of a particular class in making the 
terrain susceptible to the landslide. The feature class 
weights can be calculated using the equation:
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Rodriguez et al., (2005), Far et al., (2007), Tachika-
wa et al. (2011), and USGS (2015). The downloaded 
elevation data sets were clipped with an extended 
study area map and used for further processing. 
Before generating terrain attributes from the DEMs, 

the voids were filled with DEM reconditioning and 
fill DEM modules available in the ArcHydro tools 
using ArcGIS. This has given hydrologically correc-
ted DEMs. These elevation surfaces were used for 
further processing. 

Fig. 2
ASTER and SRTM 
elevation surfaces 
showing cross 
profile location

Results and Discussion 

Suitability analysis 

The suitability of each elevation dataset in the study 
area was analysed by comparing the elevation points 
extracted from the SoI toposheets, ASTER and SRTM 
through the linear regression analysis. This gave a 
correlation of 0.98 (R2= 0.971 and 0.976 for ASTER 
and SRTM, respectively) for both the datasets with to-
posheet derived elevation (Figure 3). The root mean 
square error (RMSE) is calculated for both the data 
sets varying from ± 62 (SRTM) to ± 76 m (ASTER) 
while compared with toposheet elevation whereas 
the RMSE is very low (± 26 m) with a high correlati-
on coefficient (0.99) between SRTM and ASTER. This 
confirms the selection of ASTER and SRTM elevation 
datasets for the present study. A cross profile depic-
ting the elevation variation from both the DEMs was 
plotted from West to East by including maximum va-
riation (Figure 4). The profiles indicate variation in 
height and characteristics of the topography. In this, 
the SRTM is found to be smoother and devoid of sharp 
changes in elevation values and can be considered as 

representing the real near surface condition. The cha-
racteristics of the study area can be well explained 
from the elevation profiles.

Fig. 3
Linear plot showing the cross correlation between toposheet-
derived elevation points with ASTER and SRTM elevation points
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The eastern side of the study area shows maximum 
elevation, gently undulating and short sloping surfa-
ce, which is the characteristic feature of the plateau 
region. Some of the segments indicate the concordant 
summits. Following the gently undulating terrain, 
a long, steep sloping surface, which represents the 
side slope (westward) of the plateau, appears and 

occupies nearly 20% of the surface profiles. The long, 
steep sloping surface ends in terrain with characte-
ristic undulations and finally to the broad river valley. 
From the river valley, further westward show highly 
undulating terrain characteristics with continuous 
hills, slopes and in between valleys. 

Fig. 4
Cross profile 

showing elevation 
and slope variation 

in ASTER and SRTM 
DEMs

DEM derivatives variation analysis

Six topographic variables such as slope, aspect, re-
lative relief, slope length and steepness, curvature 
and landform were generated from both the elevation 
data sets in order to assess the variability of deriva-
tives in its value and spatial distribution. The basic 
characteristics of the elevation distribution and other 
topographic variables derived are presented in Table 
1. The lowest elevation for both data was 96 m and 
84 m, whereas the maximum elevations were 1,370 
and 1,395 m for ASTER and for SRTM DEMs, respecti-
vely. Area distribution of elevation datasets was per-
formed by classifying both the DEMs into 13 different 
classes of elevation. This classification does not show 
much variation in the area corresponding to each 
class of elevation except the lowest elevation class 
< 100 m, in which the SRTM occupies less area com-
pared with the ASTER elevation surface. 

The slope surface derived showed maximum values 
65º and 64º for ASTER and SRTM, respectively (Figure 
5 a & b). The classification of slope surfaces into 6 
classes showed a slight variation in spatial distribu-
tion in both the data (Figure 6 a). Similarly, the slope 
profiles indicated a high variation in the slope deri-
ved from ASTER and SRTM elevation surfaces (Figure 
4). Among them, the lowest slope was plotted by the 
ASTER surface in the gently undulating, high elevati-
on region (6º variation with an SRTM-derived slope), 
whereas the highest slope was marked by SRTM de-
rived slope surface in the moderate elevation region 
(> 16º variation with an ASTER-derived slope). This 
will have an impact on analysis results of the envi-
ronmental processes, which use the digital elevation 
surface for deriving the slope parameter. The slope 
aspect, which determines the direction of the slope, 
was generated and reclassified to understand the 
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spatial variation in the distribution (Figure 5 c & d).  It 
was found that the aspect surfaces shows equal distri-
bution in all classes except in the flat region. The AS-
TER-derived aspect showed more flat areas than that 
of SRTM (Figure 6 b). Changes in the elevation in the 
unit area, which influences the geomorphic process 
operating in the area, are termed as a relative relief. 
The range neighbourhood function based generati-
on of a relative relief map from both the DEMs gave 
the outputs with a maximum variation in the lowest 
and highest values (Figure 5 e & f)). The ASTER-de-
rived relative relief surface showed a range of values 
between 21−766 m/km2, whereas the SRTM based 

range showed between 52−810 m/km2. The reclas-
sification of relative relief maps showed the varia-
tion in the distribution of each range, particularly 
in the classes of 100−200 m/km2, 400−500 m/km2 
and > 500 m/km2 (Figure 6 c). In the class range 
100−200 m/km2, the ASTER-derived relative relief 
map occupies more area than that of SRTM. Howe-
ver, it was also noted that with the higher relative 
relief ranges (400−500 m/km2 and > 500 m/km2) 
the SRTM-derived surface occupies more area than 
the ASTER-derived relative relief map. This indica-
tes the capability of SRTM, which almost correctly 
detected the surface elevation.  

Min. Max. Mean STD

1 2 3 4 5 6

Elevation (m) 96 1370 477.38 316.7

ASTER

Slope (degree) 0 65 19.41 10.15

Relative Relief (m/km2) 21 766 331.64 145.72

Slope length and steepness 0 37 6.89 4.43

Curvature -9 9 -0.003 0.59

SRTM

84 1395 486.31 317.55 Elevation (m)

0 64 21.68 10.73 Slope (degree)

52 810 352.79 147.63
Relative Relief 
(m/km2)

0 46 7.57 4.73
Slope length and 
steepness

-15 18 -0.003 1.15 Curvature

Table 1
Basic statistical characteristics of terrain variable generated from ASTER and SRTM DEMs

The most crucial erosion controlling parameter, which 
cumulates the effects of length of slope and its ste-
epness, was also derived from both the digital elevation 
models. The LS factor generated from both the eleva-
tion surfaces showed variability in the spatial distribu-
tion and also in the highest values, i.e., 37 and 46 for 
ASTER- and SRTM-derived surfaces, respectively (Fi-
gure 5 g & h). The discretisation of LS values showed 
maximum differences in the lowest class (0−5) and a 

minimum variation in the class ranges 10−15 and 
15−20 (Figure 6 d). The classification also allows the 
assessment of spatial domain distributions, and it 
was noted that the distribution of class 3 (15−20) 
was more crucial in the area and was going to play 
a major role in the erosivity-related issues. Many 
researchers have used plan and profile curvatures 
independently to identify the erosional and deposi-
tional surface in the area under study (Drăguţ and 
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Blaschke, 2006, Klingseisen et al., 2008, Nefeslioglu 
et al., 2010, Evans, 2012). Plan curvature measures 
the rate of change of slope perpendicular to the slo-
pe direction, whereas the profile curvature measu-
res the rate of change of slope parallel to the down 
slope direction. In order to assess the cumulative 
effect of the curvature in the terrain characterisati-
on by classifying the terrain into a positive (convex), 
negative (concave) and flat surfaces, the total cur-
vature was generated from both the elevation sur-
faces (Figure 5 i & j). Curvature generated from the 
ASTER DEM ranges from -9 to 9, whereas that of 

SRTM-derived surface vary between -15 to 18. The 
grouping of curvature values into concave, flat and 
convex curvatures yielded a maximum difference in 
the flat surface category. The ASTER-derived curva-
ture surface showed a larger area as flat than tho-
se of SRTM (Figure 6 e). The reverse scenario was 
observed in the case of convex surface area, where 
SRTM showed more area than ASTER. The major 
changes in the area and spatial distribution will have 
a high influence on the results of the analysis of 
geo-environmental phenomenon like landslide and 
soil erosion assessments.  

Fig. 5
Parameters derived 

from ASTER and 
SRTM DEMs: (a 
& b) slope; (c & 

d) aspect; (e & f) 
relative relief



29Environmental Research, Engineering and Management 2017/73/2

Fig. 5
Parameters derived 
from ASTER and 
SRTM DEMs: (g & h) 
LS; (i & j) curvature; 
(k & l) landform

An attempt was also made to classify the study area 
into different landforms based on the model proposed 
by Guisan et al. (1999), using the topographic positi-
on index (Weiss, 2000), which works on the concept 
of a mean neighbourhood of elevation values and its 
categorisation. The landform classes can be com-
pared with the geomorphology of the terrain, which 
also divides the terrain into different features. Digital 

elevation model based landform analysis resulted in 
10 categories, such as high ridges, mid-slope ridges, 
local ridges, upper slopes, open slopes, plain, valley, 
upland drainages, midland drainages and streams 
(Figure 5 k & l). The area distribution of each class of 
landform was within the same ranges for both eleva-
tion sources, unlike the other parameters (Figure 6 
f), and a slight variation was noticed in the landform 



Environmental Research, Engineering and Management 2017/73/230

class under plain. This indicates the capability of both 
elevation surfaces in generating the landform classes 
in almost equal manner and can be used for the re-
gions similar to the study area. The performance of 
digital elevation models in deriving the hydrological 
parameters from highly undulating terrains was also 
characterised by generating the stream networks. 
Channel networks derived through the same crite-
ria were tagged with Strahler’s stream order and the 
length of each segment was calculated (Figure 5 m & 
n). Basic statistics of stream networks derived from 
both digital elevation surfaces are given in Table 2. It 

was found that both elevation surfaces behaved very 
differently in the generation of the basic hydrological 
parameter. ASTER-derived stream networks showed 
maximum numbers of segments as 1,605, where-
as those of SRTM were 2,924. While considering the 
stream order based segments, a wide variation in the 
number of segments is noticed in the first and second 
order streams. Moreover, stream networks derived 
from SRTM elevation surface showed close resem-
blance to the real terrain conditions, which in turn 
confirms the suitability of SRTM elevation data in the 
generation of hydrological parameters and processes.  

Fig. 5
Parameters derived 

from ASTER and 
SRTM DEMs:  

m & n  – stream 
networks

Stream Order
Number of segments Length (km)

ASTER SRTM ASTER SRTM

1 2 3 4 5

1 826 1,507 118.55 258.01

2 337 657 68.748 108.19

3 227 317 44.102 50.17

4 102 258 20.65 37.24

5 110 121 18.66 17.01

6 3 64 0.39 8.99

Total 1,605 2,924 271.1 479.61

Table 2
Comparison of drainage networks delineated from ASTER and SRTM DEMs
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Fig. 6
Graphical representation of area distribution in ASTER- and SRTM-derived terrain variables: a) slope, b) aspect, c) relative relief, d) LS, e) 
curvature, f) landform

Performance comparison of variables through 
landslide susceptibility analysis

The suitability and the sensitivity of digital elevation 
model based terrain variables in landslide suscepti-
bility mapping were determined by the production of 
landslide susceptibility index (LSI) maps. The individu-
al weights or contribution of features classes of each 
thematic variable used in the analysis were derived 

using the InfoVal technique, by comparing the distri-
bution of already mapped landslides with data layers. 
The InfoVal weights calculated for each thematic fea-
ture classes are given in Table 3. The close examina-
tion of the derived InfoVal weights of each parameter 
from digital elevation models showed a slight variati-
on in the distribution of landslide occurrence and area 
of particular feature classes. While comparing the 
InfoVal weights of ASTER- and SRTM-derived slope 

a

c

e

b

d

f
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Parameter / Class
Landslide (Pixel) Area (pixel) InfoVal weight (ln)

ASTER SRTM ASTER SRTM ASTER SRTM

Slope  

0−5 2 1 9,603 7,299 -0.39 -0.81

5−10 3 4 12,644 10,968 -0.26 0.17

10−15 1 2 15,937 13,301 -1.59 -0.72

15−25 6 5 38,632 34,986 -0.68 -0.77

25−35 16 16 27,222 32,203 0.65 0.48

> 35 6 6 6,553 11,834 1.09 0.50

Aspect  

Flat 0 0 2,917 277 -5 -5 #

N 5 5 10,126 11,876 0.47 0.31

NE 4 5 12,174 12,977 0.07 0.23

E 9 8 11,887 12,019 0.90 0.77

SE 4 4 8,893 9,457 0.38 0.32

SE 6 4 15,005 14,350 0.26 -0.10

SW 3 6 25,959 26,427 -0.98 -0.30

W 2 1 15,382 15,225 -0.86 -1.54

NW 1 1 8,248 7,983 -0.93 -0.90

Relative Relief  

< 100 0 0 2,809 1,624 -5 -5 #

100−200 1 1 22,587 18,854 -1.94 -1.76

200−300 5 3 24,829 25,106 -0.42 -0.95

300−400 15 12 23,854 21,840 0.72 0.58

400−500 10 13 19,856 23,034 0.49 0.61

> 500 3 5 16,656 20,133 -0.53 -0.21

Slope length and Steepness 

5 9 7 41,186 36,096 -0.34 -0.46

10 10 14 43,456 42,460 -0.29 0.07

15 14 11 21,261 24,943 0.76 0.36

20 1 2 3,892 5,796 -0.18 0.12

>20   796 1,296 -5 -5 #

Table 3
InfoVal weights derived for the parameters considered in the LSI generation
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Parameter / Class
Landslide (Pixel) Area (pixel) InfoVal weight (ln)

ASTER SRTM ASTER SRTM ASTER SRTM

Curvature  

Concave 16 15 49,145 52,760 0.06 -0.08

Flat 2 3 14,957 5,956 -0.83 0.49

Convex 16 16 46,489 51,875 0.11 0.0032

Landform  

Mid-slope  drainages 2 2 8,810 9,186 -0.30 -0.35

Upland drainages 1 1 407 678 2.08 1.57

Valley 0 0 10,795 11,065 -5 -5 #

Plain 0 0 5,940 5,345 -5 -5 #

Open slopes 10 14 49,439 49,489 -0.42 -0.08

Upper slopes 11 13 10,410 10,989 1.23 1.35

Local ridges 0 0 588 876 -5 -5 #

Mid-slope ridges 2 1 8,503 8,823 -0.27 -1.00

High Ridges 8 3 8,085 7,100 1.17 0.32

Streams 0 0 7,614 7,040 -5 -5 #

Drainage Density  

Low 750 10 9 11,989 7,777 1.00 1.33

Medium 1,500 22 25 72,727 74,956 -0.02 0.08

High > 1,500 1 0 25,875 27,858 -2.07 -5 #

Fracture density 

Low (250 m/km2) 17 27,699 0.69

Medium (< 750 10 54,681 -0.52

High > 750 7 28,211 -0.21

LULC (NDVI)  

Barren/exposed areas 1 3,864 -0.17

Open scrubs 8 21,568 0.19

Vegetation with low 
density

18 55,519
0.05

Moderately dense 
vegetation

5 23,034 -0.35

Thick vegetation 2 6,606 -0.02

# -5 – Arbitrary value considered
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Fig. 7
Landslide 

susceptibility 
index map 

generated using 
all parameters: a) 

ASTER; b) SRTM

classes, it was noted that high susceptibility with a 
greater number of landslide occurrences for the slo-
pe classes greater than 25°, but the InfoVal weight 
value is highly variable. This is due to the changes 
in the area dimension of particular classes derived 
from both DEMs. The same pattern was also obser-
ved in aspect, relative relief and landform. The other 
parameters like slope length and steepness (LS), 
curvature and drainage density showed much varia-
tion between the feature class weights. In the theme 
fracture density, a greater number of landslides were 
reported from the low density zone, showing a high 
InfoVal weight while compared with high and medium 
fracture density zones. In the case of land use / land 
cover, the low vegetation density class covered more 
area and many of the landslides were reported from 
that zone. To generate the LSZ map, the weights deri-
ved for the individual sets of thematic map classes were 
assigned to produce the InfoVal thematic maps, which 
represent the positive and the negative contribution to 
the susceptibility of landslides. Then, using the raster 

calculator option of ArcGIS spatial analyst, these InfoVal 
thematic maps were integrated to produce the landslide 
susceptibility index (LSI) map. This gave 2 LSI maps, one 
with ASTER-derived variables and another with SRTM.  

The landslide susceptibility index map produced by 
using the ASTER-derived variables showed a suscep-
tibility index value varying from -19.50 to 7.49, where-
as that produced by SRTM-derived variables showed 
susceptibility index ranges from -22.22 to 6.24 (Figure 
7 a & b). Both LSI maps showed spatial variations in 
the distribution of high susceptibility and its area. The 
distribution of susceptibility of indexes for both LSI 
maps was compared, and the variability in the distri-
bution of susceptibility was found to be marginal. In 
order to reconfirm the sensitivity of LSI maps thus 
produced to the parameters derived from the digital 
elevation models, a method of omission was introdu-
ced to reproduce the LSI maps. In this, the variables 
(fracture density and land use / land cover) that were 
not generated from digital elevation models were re-
moved from the calculation of the LSI map. Then, the 

a b



35Environmental Research, Engineering and Management 2017/73/2

Fig. 8
Landslide 
susceptibility index 
map generated 
using DEM-derived 
variables only: a) 
ASTER; b) SRTM

with those generated with all parameters. Table 4 sho-
ws the general statistical parameters of the genera-
ted LSI maps. These indicate the normalising effect 
of other parameters over the DEM-derived variable in 
the landslide susceptibility mapping and the sensitivity 
of equal resolution, different sourced digital elevation 
models in landslide susceptibility mapping. 

Source elevation

 LSI (all parameters) LSI (DEM derivatives only) 

Minimum Maximum Mean
Standard 
deviation

Minimum Maximum Mean
Standard 
deviation

1 2 3 4 5 6 7 8 9

SRTM -22.21 6.24 -3.22 4.03 -16.35 4.07 -1.98 2.88

ASTER -19.5 7.48 -3.02 3.85 -16.59 5.61 -2.47 3.45

Table 4
Comparison of statistical parameters of LSI maps

raster calculator was used to integrate all other Info-
Val weighted themes to produce the LSI maps. The LSI 
map thus produced showed susceptibility index ran-
ges from -16.56 to 5.61 for ASTER and -16.35 to 4.08 
for SRTM themes (Figure 8 a & b). The analysis of the 
distribution of susceptibility values of each LSI maps 
showed a high variability in its distribution compared 

a b
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Sensitivity and specificity of LSI maps – the 
ROC statistics

The landslide susceptibility analysis resulted in 4 LSI 
maps, of which 2 represent LSI maps with all parame-
ters and another 2 maps are based on DEM-derived 
parameters only. The suitability, reliability and accuracy 
of the produced LSI maps were determined by valida-
ting with 18 numbers of landslides, through the receiver 
operating characteristic (ROC) curve analysis. The ROC 
curve works on the basis of occurrence and non-occur-
rence of events, which can be considered as the pro-
bability of true or false prediction based on different 
cut-offs (Williams et al., 1999, Alonzo and Pepe, 2002, 
Fawcett, 2006). The area under the ROC curve is used as 
the measure of predictive accuracy of the model and ul-
timately reflects the sensitivity of the parameters used 

to produce the LSI maps. If the area under the curve 
(AUC) reaches 1, it indicates a perfect prediction and 
those below 1 indicate variation in accuracy in diffe-
rent magnitudes (Yesilnacar and Topal, 2005, Beguería, 
2006, Mancini et al., 2010, Nandi and Shakoor, 2010). 
Two groups of LSI maps were validated by assessing 
the AUC and both showed a variation in AUC among LSI 
generated by the same sets of parameters (Table 5). 
LSI maps prepared using the terrain variable genera-
ted from ASTER data shown lower AUC (0.67 and 0.65) 
than those generated from SRTM data (0.77 and 0. 72). 
LSI maps generated by using the variables derived from 
the SRTM digital elevation model come in the class of 
fair predictability, whereas that of ASTER-derived falls 
in the class of poor predictability. This indicates the sen-
sitivity of SRTM elevation data sets and its usability in 
predictive modelling of terrain process. 

Area under the curve ( all parameters)

Test result 
variable(s)

Area under the 
curve Std. errora Asymptotic sig.b

Asymptotic 95% confidence interval

Lower bound Upper bound

1 2 3 4 5 6

LSI_ SRTM .769 .078 .006 .615 .922

LSI_ASTER .673 .090 .076 .496 .850

Area under the curve ( DEM variables only)

LSI_ SRTM .718 .086 .026 .549 .886

LSI_ASTER .651 .092 .121 .471 .832

Table 5
Results of the sensitivity analysis performed using ROC curve techniques

Conclusions
The present study focuses on the determination of 
performance of equal resolution digital elevation 
models in deriving the terrain variables and its sen-
sitivity in landslide susceptibility zonation mapping. 
ASTER and SRTM elevation datasets with a spatial 
resolution of 30 m were used in the comparative 
assessment. The statistical assessment of elevati-
on data compatibility with the toposheet elevation 
showed a close correlation (0.98) of both elevation 

datasets, which confirms the suitability of both data 
sets in the present analysis. The performance of 
each elevation data set in deriving the terrain para-
meters facilitated the determination of performance 
of the data sources and a total of seven topographic 
and hydrological parameters was derived from both 
elevation datasets. Derived variables did not show 
much variation in the values, but the spatial pattern 
was highly variable. Among the variables, the major 
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difference was noted in slope, relative relief, LS and 
curvature along with the stream networks derived. 
The influence of this variability, in cumulative analy-
sis was tested by preparing the landslide susceptibi-
lity index maps using the same variables through the 
InfoVal technique. The resulted LSI maps reflected 
the sensitivity of terrain variables (different source) 
used in the analysis and were characterised by the 
ROC curve techniques. The ROC curve analysis re-
vealed the capacity of SRTM elevation datasets to 
correctly derive the terrain parameters by providing 
the LSI map with the prediction accuracy of 0.77, as-
sessed through the area under curve analysis, which 
is considered as above the acceptable limit, whereas 
that of ASTER-derived LSI map showed poor pre-
dictability with an area under the curve of 0.67. In 
order to reconfirm the sensitivity of the terrain pa-
rameters derived from the digital elevation models, 
an omission technique based assessment of LSI was 

carried out by delimiting the effect of other parame-
ters, such as fracture, drainage density and land use 
/ land cover. This also shows a similar result with 
the acceptability and sensitivity of SRTM based ter-
rain parameters in producing more accurate LSI 
maps than the ASTER-derived terrain variables, by 
providing the AUC 0.72 and 0.65 for SRTM and ASTER 
based LSI maps, respectively. 
Although the results of comparison of elevation va-
lues of both DEMs with toposheet data points gave 
the high correlation, the data distribution was found 
to vary widely. This has resulted in the differentiation 
and variable sensitivity of terrain variables from both 
the elevation surfaces.  From the results of the suita-
bility assessment and sensitivity analysis performed, 
it can be concluded that, although both DEMS possess 
equal resolution, the SRTM DEM represents the near 
real surface condition, is more sensitive with less er-
ror and confirms its suitability in similar studies.  
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Veikla ir jautrumas laisvai prieinamose vienodos raiškos erdvėse sumontuoto skaitmeninio pakėlimo 
modelio išvestinių nuošliaužų jautrumo savybių analizėje buvo atlikti pasirinktoje Vakarų Ghatų teritori-
joje, Indijoje. ASTER ir SRTM skaitmeninių pakėlimo modeliai turintys 30 m rezoliuciją  buvo naudojami 
išvesti vietovės kintamuosius, tokius kaip nuolydis, aspektas, santykinis reljefas, šlaito ilgis ir statumas, 
kreivumas, žemės formos ir upelių tinklai. Dauguma šių kintamųjų rodė erdvinius kintamuosius paskirsty-
mo modelyje, kuris turi įtakos analizuojamiems geo-aplinkos procesams. Kiekvieno šių kintamųjų jaut-
rumas, išvestas iš skaitmeninių pakėlimo modelių buvo įvertintas ruošiant nuošliaužų jautrumo indeksų 
(NJI) žemėlapius, naudojant informacijos vertės (ang.: Information Value (InfoVal)) techniką ir buvo pat-
virtinti per imtuvo operatoriaus charakteristikų (IOC) kreivės analizę. NJI žemėlapiai sukūrė SRTM skait-
meninio pakėlimo modelio taškus, kad būtų galima teisingiau generuoti vietovės kintamuosius, nei ASTER 
pakėlimo paviršius, pateikdami NJI žemėlapių, kurie yra didesni nei tie, kurie pagaminti naudojant ASTER 
gautus parametrus (0.77 and 0.72 for SRTM; 0.67 and 0.65 for ASTER), tikslumą. Pateikti šio tyrimo rezul-
tatai nurodo, kad SRTM skaitmeninių pakėlimo duomenys yra jautresni ir labiau tinkami vietovės analizei 
bei žemės paviršiaus procesų modelevimui nei ASTER pakėlimo duomenų rinkiniai, nors abu turi vienodas 
rezoliucijas. 

Raktiniai žodžiai: ASTER, SRTM, jautrio analizė, nuošliaužų jautrumas, imtuvo operatoriaus charakteris-
tikos, Vakarų Ghatai.


