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Surface evaporation rates that are greater than precipitation rates lead to upward salinization processes and, conse-
quently, man-made contamination of the covering surface layers on coal dumps in Western Donbass, Ukraine. The 
effectiveness of capping the mine dumps with different layers of black-soil mass, both with and without a shielding 
layer of loess-like loam, was studied in order to develop the optimal scheme for the reclamation of these dumps. 
Principal component analyses were carried out in order to reveal the regularities of the upward salt migration to the 
surfaces of reclaimed coal mine dumps. The parameters of the layer-by-layer variation of the physical and chemical 
data in soil water extracts (namely, pH, total salinity and concentrations of bicarbonates, chlorides, sulfates, calcium, 
magnesium, sodium and potassium) which were obtained in 1987, 2003 and 2016 along the reclaimed profiles of 
various models of technogenic edaphotop, gradually acquire a stable-equilibrium state of mineralization in space 
and time. The alkaline barrier is the main factor for pH-changes and profile salinization of reclaimed land.
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Introduction
The need for land reclamation in Ukraine’s Western 
Donbass region is associated with the long-term 
underground coal development in the Samara River 
floodplain. The problems associated with environ-
mental restoration after coal mining are relevant 
even for such developed countries as USA, Germany, 
UK and others (Chugh and Behum 2014; Bellenfant 
et al. 2013; Wiessner et al. 2013; Lottermoser 2010; 
Bian Zhengfu et al. 2010). However, the difference in 
the ratio of precipitation and evaporation can exclude 
the automatic application of known reclamation ap-
proaches and so requires the development of new 
technologies for application in Ukraine.

The problem of nature conservation in Western Don-
bass is very real since almost half of the coal reserves 
are deposited under Samara River floodplain and its 
tributaries. Among the negative impacts after coal 
mining, contamination of surface and groundwater 
bodies is the most significant. The main sources of 
such contamination (that is, besides the mine water 
from beneficiation plant) are the mine-tailing dumps 
and products resulting from coal dressing. The coal 
mining also results in the formation of deep fissures 
and intense subsidence on the floodplain surface (up 
to 1 m, and sometimes up to 3-7 m). The areas of 
subsidence are then filled with ground and surface 
water and turn into a waterlogged reservoirs, lead-
ing to subsidence at the surface and, eventually, to 
the flooding of large areas. The environmental state is 
aggravated by leaching toxic substances from waste 
rocks accumulated in slag heaps, which contaminates 
soils and groundwater (Yevgrashkina et al. 2009).

Reclamation of these floodplain areas has been car-
ried out for almost 50 years using rocks from mine 
excavation. This may result in the extraction of en-
vironmentally hazardous substances at critical con-
centrations in soils and surface waters (Kostenko 
and Opanasenko 2005; Kharytonov et al. 2012). In that 
regard, environmentally harmful substances in mine 
dumps (such as sulfides and chlorides) vary over 
time, depending on the physical and chemical condi-
tions (Kharytonov and Yevgrashkina 2009).

At the initial stage of weathering, leaching of wa-
ter-soluble salts from mine-dump rocks is observed, 

a process that begins almost immediately after plac-
ing the mine rocks at surface level. With the passage 
of time, the rate of salt removal decreases, and such 
trends contribute to the improvement of the dumps in 
terms of their reclamation. The rate of salt removal 
depends on several factors, such as geomorphologi-
cal conditions of excavation, the texture and chemical 
composition of mine rocks, and bioclimatic poten-
tial. However, the rate of change in the chemical rock 
composition can be different, and the main source of 
harmful chemical influence is sulfides (such as pyrite, 
pyrrhotite, and marcasite) which, after oxidation, turn 
into iron sulfate and sulfuric acid (Kharytonov and 
Yevgrashkina 2009; Hayes et al. 2014; Huff 2014).

The main environmental challenge in developing 
the optimal scheme for land reclamation in Western 
Donbass is the prevention of upward salinization and 
consequent man-made contamination of overlying 
artificial surfaces which results from the rate of evap-
oration being greater than the infiltration rate from 
rainfall precipitation (Kharytonov 2007; Tarika and 
Zabaluev 2004; Konhke 1950). This imbalance is the 
most important factor in enhancing the weathering of 
potentially toxic rocks accumulated in mine dumps. 
An earlier assessment of the qualitative and quantita-
tive composition of the anions and cations in aqueous 
extractions from soil and rock samples showed that 
the main unacceptable consequence is the gradual 
salinization of the artificial surface layers of reclaimed 
lands with sodium and magnesium chlorides and sul-
fates contained in coal dumps (Kharytonov and Kroik 
2011; Bender 1983).

Thus, the majority of mine dumps requires measures 
for protecting the upper layer from the accumulation of 
toxic salts resulting from their upward migration. For 
example, high levels of exchangeable aluminum are 
considered to be the main restriction for plant growth 
(Shengyin Wang et al. 2016; Silva 2012), and to neutral-
ize this effect it is recommended that chemical amelio-
rants are applied so as to create geochemical barriers 
(José Roberto Pinto de Souza et al. 2000). In addition, 
several methods for land reclamation have been pro-
posed, such as application of various calcium-contain-
ing substances (such as lime) (Nkongolo et al. 2016), 
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fly coal ash (Malik and Thapliyal 2009; Zhenqi Hu et al. 
2004), sludge from alumina processing (Kyncl 2008), 
increased amounts of organic matter (such as sewage 
sludge and compost) (Baran et al. 2015; Tamanini et al. 
2008; Larney and Angers 2012) and mineral fertilizers 
(Sheoran et al. 2010), plus the imposition of a layer of 
carbonate rocks (Hoff and Kolff 2012).

Observations of the mine dumps in Western Donbass 
indicate the need to study the changes in physico-
chemical properties of the mine rocks, establish the 
rate of removal of the weathered rock material, and 
study the vertical migration of toxic substances along 
the technogenic edaphotop of the reclaimed land. 
Thus, experiments suggested a long-term study of 
the effectiveness of the two- and three-layer reclama-
tion models as geochemical barriers for blocking the 
upward migration of toxic salts from the mine dumps.

Considering the above-mentioned issues, the goal of 
the presented study was to identify the regularity, or 
otherwise, of patterns in the leaching of soluble salts 
along the profile, and the dynamics of these process-
es over time, depending on the initial designs of the 
soil-like bodies at the reclaimed mine dumps.

Materials and methods
The presented study was conducted on the basis of 
the Pavlograd experimental station for reclamation of 
disturbed lands in Western Donbass (eastern Ukraine) 
located nearly mine “Pavlogradska” (coordinates 
48°33’24’’ N, 35°58’46’’ E). The station was founded in 
1976 in the floodplain of the Samara River in order to 
examine the best restoration measures.

The “Pavlogradska” mine was put into operation in 
1968 with the project capacity of 1200 thousands ton 
per year. The project capacity was reached at 1977. 
Industrial field of the mine is located in the floodplain 
of Samara river in Dnipropetrovsk region.

The main reclamation objective included the cultiva-
tion of both field and orchard crops. The scheme for 
reclamation of disturbed land was based on the study 
of the effectiveness of capping the mine dumps with 
different layers of black-soil mass (chernozem) both 
with and without a shielding layer of loess- like loam.

In this study the following models (variants) of techno-
genic edaphotops were used to look into the peculiarity 
of upward migration of toxic salts from the mine dumps:
1 Mine rock (MR) + 30 cm of the bulk layer of black soil 

(30BS);

2 MR + 50BS;

3 MR + 50 cm of the loess-like loam (50LLL) + 30BS;

4 MR + 50LLL + 50BS.

The general scheme of artificial soil profiles creation 
is presented in Figure 2. It should be noted that in 
every year (until 1997) all normal variants of plants 
associated with field crop rotation were grown. Then, 
due to reformation of the industrial enterprise “Pav-
logradvugillia”, the experimental sites were under 
natural overgrowth (Fig. 1).

Fig.1 
General view of the experimental site

Fig. 2
The scheme of the experimental plots with 1-4 variants of reclamation
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Samples of the soil substrates were collected at 10 cm 
depth intervals until the dump material was reached; 
these samples were then air-dried and sieved through 
a 2 mm screen for general analytical determinations. 
The pH, conductivity and dry residue values were 
determined in accordance with the State Standard 
26423-85 “Soils. Methods for determination of specif-
ic electric conductivity, pH and solid residue of water 
extract”. Besides, concentrations of the following cat-
ions and anions were determined in accordance with 
commonly used techniques: bicarbonates, chlorides, 
sulfates, calcium, magnesium, sodium and potassi-
um (the State Standards 26428-85, 26423-85, 26426-
85, 26425-85, 29269-91).

Statistical calculations were carried out using Statis-
tica 7.0. Principal components analyses were applied 
in order to reveal the regularities of the upward salt 
migration along the overall surface of reclaimed coal 
mine dumps. 

In the presented study the following factors were con-
sidered as the predictors: 
 _ the “type” of reclamation factor (factor levels:  

reclamation variants 1 (MR + 30BS), 2 (MR + 50BS),  
3 (MR + 50LLL + 30BS) and 4 (MR + 50LLL + 50BS); 

 _ the “time” factor (factor levels: 1987, 2003 and 2016 
years of research); 

 _ the “depth” of sampling factor represented by data 
from each 10 cm of the soil substrate profile until 
dump material (factor levels: data of the physical and 
chemical analysis of the concentrations in soil water 
extracts, namely pH, total salinity and concentrations 
of the bicarbonates, chlorides, sulfates, calcium, 
magnesium, sodium and potassium).

Results and discussion
The principal component analyses revealed three 
main components whose eigen values exceeded 1; in 
aggregate these account for 68.13% of total variance 
(Table 1).

The principal component 1 (PC1) accounts for 47.01 % 
of total variance, and this component is characterized 
by statistically significant correlation coefficients with 

all features under consideration. The acidity index of 
soil extract is characterized by a positive coefficient of 
correlation, in contrast to the other indicators which 
are characterized by a negative coefficient. Thus, the 
PC1 reflects the level of total mineralization of the soil 
solution, indicating that the increase in mineralization 
is associated with a decrease in pH values.

The general linear model of the effect of the type of 
technogenic edaphotop, in combination with time and 
depth of sampling, provides an explanation for 92 % of 
the PC1 variability (Table 2).

It should be noted that all studied predictors, and their 
combinations, proved to be statistically reliable pre-
dictors of the PC1. The highest value for variation of 
the PC1 is established for “type” of technogenic eda-
photop and “depth” of sampling (Figure 3). Although 
“time” is a statistically reliable predictor, it plays an 
insignificant role in the PC1 variation. In general, pre-
dictor “time” can be described as one that changes in-
significantly during the study period.

The highest general level of mineralization is estab-
lished in variant 1 (i.e. MR + 30BS), a level a little bit 
lower is specific for variant 2 (i.e. MR + 50BS), and 

Table 1
Principal component analyses of the variation related to the 
mineralization of soil solution and chemistry of water extraction (Note: 
Statistically significant correlation coefficients are given for p <0.05)

Variable
Principal components

PC1 PC2 PC3

1 2 3 4

рН 0.86 – –0.30

Dry residue, % –0.97 – –

HCO3
- –0.73 0.28 –0.29

Cl- –0.84 – –0.24

SO4
2- –0.96 –0.12 –

Ca2+ –0.95 – 0.13

Mg2+ –0.91 –0.13 –

Na+ + K+ –0.89 –0.16 –0.19

% Total variance 47.01 10.73 10.39
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Table 2 
General linear model of effect of technogenic edaphotop type, in combination with time and depth of sampling on the PC1 value (R2 = 0,92)

Predictors Sum of squares Degree of freedom Mean Sum of squares F-ratio p-level

1 2 3 4 5 6

Intercept 739.94 1 739.94 1370.08 0.00

Type 396.11 3 132.04 244.48 0.00

Time 8.79 2 4.40 8.14 0.00

Depth 908.05 1 908.05 1681.37 0.00

Type*Time 7.41 6 1.23 2.29 0.04

Type*Depth 40.77 3 13.59 25.16 0.00

Time*Depth 15.01 2 7.50 13.90 0.00

Type*Time*Depth 12.08 6 2.01 3.73 0.00

Error 191.18 354 0.54 – –

Fig. 3
Main elements of variations of PCs 1 – 3
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Fig. 4
Variation of PC1 depending on the type of technogenic edaphotop

Conditional notations: 1 – variant 1 (MR + 30BS), 2 – variant 2 (MR + 50BS), 
3 – variant 3 (MR + 50LLL + 30mBS), 4 – variant 4 (MR + 50LLL + 50BS).

the lowest level of mineralization is more represent-
ative for variants 3 and 4 (i.e. MR + 50LLL + 30BS and 
MR + 50LLL + 50BS respectively) (Figure 4).

Fig. 5 
Profile distribution of PC1 values depending on the type of technogenic edaphotop in different periods of the study
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Table 3
General linear model of effects of technogenic edaphotop type in combination with time and depth of sampling on the PC2 value (R2 = 0,99)

External factors provide an explanation for 99.14 % of 
the PC2 variation. All investigated predictors are sta-
tistically reliable, and the highest PC2 variation value 
is established for “time” (94.9 %). As shown in Figure 6 
the PC2 value increases over time. The regression 
coefficient of depth has a negative sign (–0.10±0.01), 
which indicates that the influence of the PC2 decreas-
es with depth.

Predictors Sum of squares Degree of freedom Mean Sum of squares F-ratio p-level

1 2 3 4 5 6

Intercept 3.35 1 3.35 243.93 0.00

Type 3.55 3 1.18 86.27 0.00

Time 148.11 2 74.06 5396.96 0.00

Depth 4.17 1 4.17 304.11 0.00

Type*Time 0.28 6 0.05 3.38 0.00

Type*Depth 0.33 3 0.11 7.99 0.00

Time*Depth 1.30 2 0.65 47.29 0.00

Type*Time*Depth 0.25 6 0.04 3.05 0.01

Error 4.86 354 0.01 – –

Fig. 6
Variation in PC2 over time
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The most important factor in the PC3 variation is the 
type of technogenic edaphotop (i.e. 88.1 % of the PC3 
variation depends on this predictor). The PC3 indicates 

Fig. 8
Dependence of PC3 on type of technogenic edaphotop and time

Fig. 9
Profile distribution of PC3 values depending on the type of technogenic edaphotop in different periods of the study
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technogenic edaphotop with a layer of black soil 50 cm (variant 2), while in other types the higher content of 1 
hydrocarbonates, chlorines and monovalent ions is observed at a higher pH. In time, the PC3 values increase 2 
harmonicallyfor the technogenic edaphotop with a layer of black soil 50 cm. However, for other types the 3 
variation with respect to time is not harmonic (Figure 8). 4 
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The PC 3 indicates the specific features of the profile salts distribution in the variant 2 which were formed 9 
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during the study period (Figure 9). 11 
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towards those indicators, which are typical for other types 
of technogenic edaphotops mainly in the topsoil. The ob-
served tendency of acquired characteristics is similar to 
other types of reclamation; this is in contrast to process-
es in the deeper layers where their dynamics slow down 
in the top soil of the profile in variant 2. However, the ap-
pointed features retain their stability over time.

Conclusions
It is established that the parameters of the layer-by-lay-
er reactions variations, and the ion composition of 

the aqueous extract along the reclaimed profiles of 
various models of technogenic edaphotop, gradually 
acquire a stable-equilibrium state of mineralization, 
both spatially and over time. This tendency reflects 
the characteristics of the zonal soils. It should be 
noted that the alkaline barrier is the main factor in 
both pH changes and in the surface salinization of re-
claimed lands. The absence of a protective shielding 
layer of loess-like loam, for example, leads to rapid 
acidification of the soil solution due to the processes 
of chemical weathering of rocks at layers in contact 
with the mine dump
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Siekiant išvystyti optimalią sąvartynų utilizavimo schemą, buvo ištirtas sąvartynų su skirtingais juo-
do dirvožemio masės sluoksniais, tiek su ir be lakštinio priemolio apsauginio sluoksnio. Pagrindinės 
komponentų analizės buvo atliktos, siekiant atskleisti dugninės aukštumos migracijos į atsinaujinan-
čių anglies paviršių dėsningumus. Fizinių ir cheminių duomenų sluoksnio pokyčiai dirvožemio vandens 
ekstraktuose (būtent, pH, bendras druskingumas ir bikarbonatų, chloridų, sulfatų, kalcio, magnio, na-
trio ir kalio koncentracijos), gautų 1987 m. 2003 ir 2016 m. kartu su įvairiais technogeninio edaphoto 
modelio regeneruotais profiliais, palaipsniui įgyja stabilios pusiausvyros mineralizacijos būklė. Šarmi-
nis barjeras yra pagrindinis veiksnys, lemiantis pH pokyčius ir regeneruotos žemės profilių šalinimą.

Raktiniai žodžiai: sąvartynai, vandenyje tirpių druskų migracija, dirvožemis.




