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Given the increasing recognition of machine learning tools for use in water quality monitoring, enhancing their 
applicability in full-scale plants require investigation of their capabilities and limitations in key aspects of the 
water supply chain. This study comprehensively evaluates the performances of three artificial neural network 
(ANN) training algorithms and three solvers for regression support vector machine (SVM) with different kernel 
functions in the estimation of the counts of faecal indicator bacteria from measured records of physico-chem-
ical water quality parameters. In addition, input data were subjected to different normalization methods to 
determine their effects on the performances of both ANN and SVM models. The feedforward and the cascade 
forward algorithms yielded the lowest mean square error (MSE) values among the various ANN model config-
urations. No distinct disparity was found in the performances of the various solvers of regression SVM in the 
estimations. For the regression SVM kernel functions, the radial basis function (RBF) and the Gaussian kernel 
functions resulted in the lowest MSE values. Both the ANN and regression SVM have comparable abilities in 
predicting the levels of the faecal indicator organisms in raw water. However, the ANN models were more effi-
cient in estimating intense variations in the levels of the indicator organisms in raw water. 

Keywords: machine learning, feed forward, cascade forward, layer-recurrent, regression SVM, coliform bacteria.

Introduction
The wide range of applications of machine learning 
algorithms and computational intelligence as decision 

support tools has made them indispensable in the 
water supply industry today. Due to their robustness 
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and high accuracy in learning from imperfect data, the 
techniques significantly aid the automation of key pro-
cesses in knowledge engineering, and have proven to 
be reliable replacements for some rather time-con-
suming regular activities in the industry. Unlike tra-
ditional multivariate regression methods that model 
linear relations among variables under the assump-
tion of independence among variables, the machine 
learning approach applies different statistical, prob-
abilistic and optimization techniques in finding and 
‘learning’ regularities and patterns in records of sys-
tem operational data, establishing complex nonlinear 
relationships between noisy and interdependent vari-
ables. This makes it possible to make inferences and 
decisions that are difficult to make using conventional 
statistical methodologies (Mitshell, 1997), result-
ing in improved efficiencies of the system. Machine 
learning techniques mainly include neural networks, 
instance-based or cased-based learning, rule-based 
learning, analytic learning, ensemble learning and ge-
netic algorithms (Langley and Herbert, 1995).

Improving the capacity of treatment plants to ef-
fectively manage water quality requires alternative 
methods of estimating the levels of indicator bacte-
ria in raw water to augment conventional laboratory 
analysis methods. In recent years, researchers have 
applied various data-driven techniques to explain the 
influences of various physico-chemical water quality 
parameters on concentrations of faecal indicator or-
ganisms (FIOs) and other water quality parameters in 
raw water. These mostly include regression methods 
(Black et al., 2007; Juntunen et al., 2012) and artificial 
intelligence methods such as artificial neural network 
(ANN), adaptive neuro-fuzzy inference system (AN-
FIS) and support vector machine (SVM) (Singh et al., 
2009; Kim et al., 2012; Heddam, 2014; Mohammed et 
al., 2017). For instance, a recent study carried out in 
Germany applied multiple regression method to ex-
plain the levels and variations of faecal indicator bac-
teria in river water in Germany. According to the au-
thors, up to 70% of the variations in the levels of faecal 
indicator bacteria in the raw water samples are asso-
ciated with variations in variables such as pH, rain-
fall and solar radiation. Other studies compared the 
performance of regression and ANN, ANFIS and SVM 
methods in the prediction of water quality parameters 

(Abyaneh, 2014; Chandramouli et al., 2007; Zhang et 
al., 2015) and reported higher accuracy of these meth-
ods relative to conventional regression methods. 

Recently, the application of ANN in water quality indi-
ces prediction has gained popularity due to its ability to 
approximate complex non-linear relationships between 
physico-chemical parameters and microbial organisms 
in water with high accuracy. However, with the exception 
of its ‘black box’ nature, optimizing the various parame-
ters of the network in a way that will prevent overtrain-
ing may be challenging. In addition, the technique may 
be prone to overfitting (Tu, 1996). The performance of an 
ANN model can be affected by the selected model archi-
tecture, structure and the training algorithm used, since 
they mainly define how the inputs are transformed into 
outputs (Wu et al., 2014). Moreover, during the network 
training process, achieving optimal performance usually 
requires using different numbers of hidden layer neurons 
on a trial and error basis, to achieve optimal performance. 
Accordingly, establishing a particular set of protocols, in-
cluding the data pre-processing method, training algo-
rithm and hidden layer neurons for application in typical 
prediction problems in the water supply system is vital 
for repeating and generalizing the development of ideal 
ANN models for use in the water supply system.

Although SVM has been successfully applied in solv-
ing regression and time series problems, the method 
has not been widely applied in the prediction of faecal 
indicator organisms in raw water as compared with 
ANN. It has been reported that the difficulty associated 
with the selection of SVM model parameters makes 
its applicability limited (Lv et al., 2014). The lack of 
an optimal method for adaptation of regression SVM 
parameters has been reported in a recent review (Sa-
pankevych and Sankar, 2009). Moreover, according to 
this study, although a vast majority of applications use 
the Gaussian kernel function, which has been widely 
accepted to be more efficient, there is no formal proof 
of the function’s optimality. In addition, the choice of 
kernel functions in different time series prediction ap-
plications are arbitrary. Thus, to improve the applica-
bility of this highly efficient method in the water quality 
management, it is vital to evaluate the response of dif-
ferent kernel functions in predictive models. 

Accordingly, the main objective of this study is to 
investigate the suitability of different combinations 
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of data normalization methods, ANN training al-
gorithms, number of hidden layer neurons in ANN 
structure as well as different regression SVM train-
ing algorithms and kernel functions in the prediction 
of coliform bacteria from water quality parameters. 
The study is based on measured records of physi-
co-chemical parameters from the Oset drinking wa-
ter treatment plant in Oslo, Norway. The models are 
expected to provide a fast and reliable approach to 
complement existing monitoring exercises in water 
treatment facilities in Norway and beyond.

Materials and Methods

Study site

Fig. 1 shows the location of the study area. Maridalen 
Lake, where the Oset water treatment plant sources 
its raw water from is located in the northern outskirts 
of Oslo, is the largest lake within the Oslo munici-
pality. The lake has a surface area of 3.83 km2 and 

Fig. 1 
Map of study area showing location of Lake Maridalsvannet in Oslo, Norway

an elevation of 149 m and it is surrounded by forest 
catchment area of 252 km2. With two main prima-
ry inflows from the northern part (Skajærsjølva and 
Dausjølva), the lake has an average annual flow of 
184 million cubic meters of water, and drains mainly 
through the Akerselva River to the south. To prevent 
contamination due to human activities around the 
lake, the surrounding municipalities have imposed 
restrictions on mostly recreational activities to some 
distance away from the lake and adjoining streams 
(Oslo municipal water and waste department, 2012).

Data set

The study is based on observed counts of coliform 
bacteria and measured water quality parameters in-
cluding pH, temperature (oC), conductivity (µ), turbidi-
ty (NTU), colour (mg Pt/L) and alkalinity (mmol/L) at 
the raw water intake point of the Oset drinking water 
treatment plant in Oslo, Norway. The data consist of 
208 weekly records taken from January 2012 to De-
cember 2015. With a capacity of 390,000 m3/day, the 
Oset treatment plant, known to be the largest munic-
ipal water treatment plant in Scandinavia, provides 
safe drinking water to about 90% of the inhabitants 
of Oslo and depends on raw water drawn at a depth 
of 32 m from Maridalen Lake. The microbial data and 
the physico-chemical parameters are data taken as 
part of the routine monitoring exercise at the water 
treatment plant. 

Data normalization

Prior to the training of ANN and SVM, it is useful to 
carry out data normalization. The main purpose is to 
adjust all data variables to a common scale, to avoid 
bias. This facilitates the learning process particularly 
for the network. Moreover, by using non-linear trans-
fer functions at the output nodes of the network, it is 
necessary to transform the desired outputs to match 
the actual range of the network. Experiences in some 
studies show that considerable improvement in the 
efficiency of standard ANN and other artificial intel-
ligence models can be achieved when the input data 
are normalized before training (Jayalakshmi and San-
thakumaran 2011). This study compares two different 
data normalization methods; minimum-maximum 
and z-score as described in the following expressions:
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f( ) is a function that characterizes the hidden nodes.

Unlike the feedforward network, layer recurrent net-
work uses an extension of backpropagation known as 
the backpropagation through time (BPTT) algorithm, 
which unfolds the network in time through the crea-
tion of various copies of the recurrent units so it can 
be treated like a feedforward network with associat-
ed weights. Thus, the algorithm is updated in descript 
time steps. The errors at the hidden nodes are propa-
gated backward as:
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where uhj is the weight matrix mapping the previous 
hidden layer (spj(t–1)) to the current one. h and j are re-
spective indices for hidden nodes at time steps t and 
t-1. A standard three-layer feedforward network with 
the backpropagation algorithm was used to predict the 
levels of coliform bacteria (CFU/100 mL). The six inputs 
were water pH, temperature (oC), conductivity (µ), tur-
bidity (NTU), colour (mgPt/L) and alkalinity (mmol/L).

Regression SVM models

Support vector machine, developed by Vapnik and his 
collaborators (Vapnik, 1995), is a learning technique 
that is originally meant for binary classification. The 
principal idea of the method is to obtain a hyper-plane 
that separates different classes of data points. To en-
able a linear separation of data, SVMs employ kernel 
functions to map data from the input space into a higher 
dimensional space, creating two parallel hyper-planes 
to separate the data. Therefore, in classification, the ge-
ometric margin between the two hyper-planes is max-
imized, while minimizing the classification error (Cris-
tianine and Taylor, 2000; Singh et al., 2011).

In regression SVM as applied in this study, the aim is 
to find the optimal hyper-plane with the minimum dis-
tance from all data points (Lin et al., 2008; Pan et al., 
2008). That is, instead of a yes or no output in a typical 
classification problem, regression SVM is trained to 
output a numerical value. That is, the hyperplane with 
the least distance to all data points is optimized. Thus, 
for a given vector of water quality variables (inputs),  
and observed faecal indicator organisms (target), , a 
linear function, that yields an estimate of the target 
such that the deviation between the estimate and the 
target is less than the insensitive loss function () for 
all training data is obtained (Wu et al., 2010). Thus, 
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2008). In this study, different kernel functions are applied to determine a more appropriate one for estimating the 205 
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in the formulation of SVMs gives the method a great-
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function used is a key determinant of the performance 
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 _ Gaussian kernel (RBF):
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Model calibration and evaluation

Fig. 2 shows the procedure for the calibration and 
evaluation of machine learning models as applied in 
this study. Across the various configurations of both 
ANN and regression SVM models, the input dataset 
was divided into a training set (70%) and testing (30%). 
After the algorithm learns from the data, several per-
formance measures are used to evaluate the quality of 
the solution to classification, regression and clustering 
problems typically modelled in machine learning. The 
performance indices may include mean square error 
(MSE), root mean square error (RMSE) and confusion 

matrix indices, such as true positive, true negative, 
false positive, false negative, etc. In this study, visual 
inspection of plots that compared the outputs from 
the various combinations of input data normalization 
methods, and numbers of hidden layers were first 
used to assess the performances of the various neural 
network-training algorithms. For the regression SVM 
models, the outputs from the different kernel func-
tions were compared graphically. Finally, the overall 
performances of the models were compared using the 
mean square error values of the model predictions.

Model sensitivity analysis

Evaluating the sensitivities of each input parameter 
is necessary to determine their respective influenc-
es on the predictive abilities of the models. Moreover, 
in predicting the concentrations of the faecal indicator 
organisms in raw water, it is essential to determine 
which physical or chemical parameters of raw water 
affect the variations in the indicator organisms. While 
each parameter may directly or indirectly influence the 
occurrence of the indicator organisms in raw water, 
identifying the most important surrogates provides vital 
information for the management of the microbial qual-
ity of raw water. Therefore, the relative importance of 
the various input parameters were evaluated through 
a stepwise omission of each input parameter in the 
models. At each stage, the MSE value of the model pre-
dictions was calculated and compared with the corre-
sponding value for the model with all inputs included. In 
this case, the omission of more important inputs could 
significantly raise the MSE in the model. Due to the dif-
ferent ANN and SVM configurations used in this study, 
resulting in different MSE values, a model configuration 
with the least MSE was selected each from the ANN and 
SVM models during the sensitivity analysis.

Results and discussions

Raw data

Results of the initial statistical analysis of the raw 
data set are shown in Table 1. Considerable skew-
ness is noted in the data set, with only pH, conduc-
tivity and alkalinity being approximately symmetrical. 
In addition, some water quality parameters including 

Fig. 2 
Workflow of machine learning model calibration and evaluation
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Raw data 250 
 251 
Results of the initial statistical analysis of the raw data set are shown in Table 1. Considerable skewness is noted in the 252 
data set, with only pH, conductivity and alkalinity being approximately symmetrical.  In addition, some water quality 253 
parameters including temperature and colour showed high variabilities, respectively ranging from 0 to 13°C and 19 to 254 
57 mg Pt/L. As shown in Table 1, higher counts of the faecal indicator organism in raw water were observed in autumn-255 
winter turn over periods of each year, with the highest counts of coliform bacteria (300 CFU/100 mL) occurring at this 256 
period of 2014. In addition, greater proportion of the 208 observed data points for the faecal indicator organisms were 257 
zeros (approximately 56% and 84% for coliform bacteria and E. coli, respectively). Among the four main seasons in 258 
Norway, the mean concentrations of the faecal indicator organisms in raw water are higher in winter and autumn. For 259 
instance, compared with the four-year mean concentration of approximately 8 CFU/100 mL, the mean winter season 260 
concentration of coliform bacteria in raw water was approximately 5 CFU/100 mL. For the autumn seasons, the mean 261 
concentration is 24 CFU/100 mL.  262 
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Table 1 
Descriptive statistics of measured raw water parameters

     
Mean

Min. Max. SD Var.  Skew.
Winter Sprig Summer Autumn Overall

1 2 3 4 5 6 7 8 9 10 11

pH 6.60 6.55 6.47 6.41 6.50 6.27 7.00 0.11 0.13 -0.08

Temperature 7.06 5.21 7.15 8.89 7.07 2.80 13.70 3.23 10.4 1.72

Conductivity 2.53 2.62 2.64 2.61 2.59 2.08 3.02 0.14 0.02 -0.88

Turbidity 0.51 0.39 0.41 0.47 0.45 0.20 2.29 0.21 0.05  2.87

Color 27.43 27.05 25.73 24.45 26.31 19.00 57.00 6.84 51.5 2.19

Alkalinity 0.08 0.44 0.08 0.08 0.17 0.07 0.13 0.01 0 0.67

Coliform 5.17 0.27 0.54 24.07 7.49 0 300 22.41 502 8.36

E. coli 0.52 0.14 0.11 3.45 1.12 0 300 15.90 252 13.8

 Min. = minimum, Max. = maximum, SD = standard deviation, Var. = variance, Skew. = skewness

temperature and colour showed high variabilities, re-
spectively ranging from 0 to 13°C and 19 to 57 mg 
Pt/L. As shown in Table 1, higher counts of the faecal 
indicator organism in raw water were observed in au-
tumn-winter turn over periods of each year, with the 
highest counts of coliform bacteria (300 CFU/100 mL) 
occurring at this period of 2014. In addition, greater 
proportion of the 208 observed data points for the 
faecal indicator organisms were zeros (approximately 
56% and 84% for coliform bacteria and E. coli, respec-
tively). Among the four main seasons in Norway, the 
mean concentrations of the faecal indicator organ-
isms in raw water are higher in winter and autumn. 
For instance, compared with the four-year mean con-
centration of approximately 8 CFU/100 mL, the mean 
winter season concentration of coliform bacteria in 
raw water was approximately 5 CFU/100 mL. For 
the autumn seasons, the mean concentration is 24 
CFU/100 mL. 

ANN model response

Fig. 3 shows outputs of the performances of the feed-
forward ANN model. Only the results from the feed-
forward ANN models for 10 hidden layers are shown 
in this figure. The effect of the various raw data stand-
ardization methods on the performances of the ANN 
models are distinct from the plots. It can be observed 

that the model generally captures significant varia-
tions in the counts of coliform bacteria in raw water. 
In terms of estimating periods of intense variation in 
the count of coliform bacteria in raw water, the feed-
forward ANN model without data standardization 
outperforms the others. However, the close similar-
ity in the performances of the models from the three 
standardization methods indicate that there may be 
biasing in the one without standardization (Fig. 3 a1). 
This shows that the relative contributions of the input 
parameter in the model are not equally distributed. It 
can also be noted that out of the various normaliza-
tion methods, only the min-max method resulted in 
output values that fall within the range of 0 and 1.

These are within the range of outputs produced by 
typical activation functions used in training neural 
network. Interestingly, the training of the network 
proceeded faster than the other normalization meth-
ods. Although the output of the model with min-max 
standardization (Fig. 3 a1) shows the least perfor-
mance in estimating intense variations in the level 
of coliform bacteria, relative to the other standardi-
zation methods, it results in the lowest mean square 
prediction error. The effects of input data standardi-
zation was equally noticeable from the performanc-
es of the other ANN training algorithms used in this 
study. However, unlike the feedforward network, the 
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performances of the other training algorithms im-
proved when the input data was normalized using 
the min-max method. As shown in Fig. 3, consider-
able variations in the counts of coliform bacteria in 
raw water were estimated after the normalization. 
When the input data set was normalized using the 
z-score and MAD methods, for the same number of 
neurons in the hidden layer, each of the three ANN 
training algorithms showed adequate performances. 
However, the feedforward network was more efficient 
in estimating the variabilities in the count of coliform 
bacteria than the other two. The z-score normaliza-
tion, however, yielded some negative counts of the 

Fig. 3 
Performances of feedforward, cascade forward and layer-recurrent neural networks with 10 hidden layer neurons in predicting coliform bacteria 
under different data standardization methods
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Fig. 3 Performances of feedforward, cascade forward and layer-recurrent neural networks with 10 hidden layer neurons 268 
in predicting coliform bacteria under different data standardization methods 269 

Fig. 3 shows outputs of the performances of the feedforward ANN model. Only the results from the feedforward ANN 270 
models for 10 hidden layers are shown in this figure. The effect of the various raw data standardization methods on the 271 
performances of the ANN models are distinct from the plots. It can be observed that the model generally captures 272 

microorganism, which obviously resulted in negative 
outputs in some cases.

SVM model response

Fig. 4 shows the response of the regression SVM mod-
el with the Gaussian kernel function using input data 
with different normalization methods. The regression 
SVM model generally failed to account for periods of 
intense variations in the counts of bacteria. However, 
the model clearly estimates zero counts of the indi-
cator organism with high accuracy. Typical records of 
indicator organisms observed in raw water contain a 
large number of zeros, thus the ability of a model to 
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estimate zero counts as well as higher counts from 
real time measurements of water quality variables 
makes it useful in the water supply system. 

Amongst the various kernel functions, the Gaussian 
and the RBF functions yielded estimates that were 
much closer to the counts of the indicator organism 
observed in raw water. When the polynomial kernel 
function was applied, the system failed completely 
in learning from the data set. This resulted in much 
larger estimates, especially when no input data nor-
malization was applied. Finally, different SVM training 
algorithms used in this study yielded similar results, 
with comparable mean square error of predictions.

Comparison of model outputs

Since a large number of model response plots were 
generated using different combinations of input data 
normalization methods, network training algorithms, 
etc., only selected few plots were included in this pa-
per. To assess the overall performances of each of 
the different configurations of the models, the mean 
square errors (MSE) of the estimates were calculated 

Fig. 4 
Performances of regression SVM model in the prediction of coliform bacteria under different kernel functions
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and used as the main model performance index. Ta-
bles 2 and 3 show the results of the performances of 
the ANN model configurations while the results of the 
regression SVM models are shown in Tables 4 and 5. 
Without data normalization, the best performances of 
the feedforward (MSE = 84 CFU/100 mL) and cascade 
forward (MSE = 92 CFU/100 mL) ANN models were 
achieved when the network contained 20 neurons in 
the hidden layer. The least MSE for the layer-recur-
rent network (MSE = 97 CFU/100 mL) in this case was 
achieved with the 10 hidden layer neurons instead. 
Results of the models with data normalization prior to 
model training were transformed back into their orig-
inal forms to enable fair comparison with the results 
of the models with the raw data set (without normal-
ization). For both ANN and SVM models for coliform 
bacteria, the normalizations clearly improved the per-
formances of the models. For instances, for the same 
ANN feedforward model architecture for prediction of 
coliform bacteria, the min-max data normalization 
resulted in MSE value of 2.02 CFU/100 mL, compared 
with MSE value of 84 CFU/100 mL achieved in the 



Environmental Research, Engineering and Management 2018/74/116

Table 3 
MSE of ANN models for E. coli with various training algorithms, 
hidden layer sets, and normalizations

ANN
Hidden 
layers

MSE (CFU/100 mL)

Raw data Min-Max z-score

1 2 3 4 5

Feedforward 10 1.22 3.45 97.38

20 0.08 2.48 96.01

50 0.07 4.52 97.31

Cascade-forward 10 0.09 4.37 106.11

20 0.09 4.46 83.18

50 0.10 3.65 88.29

Layer-recurrent 10 0.14 3.51 81.41

20 0.10 2.62 74.11

50 0.09 3.03 70.19

Table 4 
MSE of regression SVM models for coliform bacteria with different 
training algorithms, kernel functions, and normalizations

SVM Solver
MSE (CFU/100 mL)

Raw data Min-Max z-score

1 2 3 4 5

Linear SMO 140.09 4.51 108.58

ISDA 140.33 4.55 102.93

L1Qp 140.51 4.46 103.36

Gaussian SMO 131.54 4.21 95.56

ISDA 132.94 4.31 96.64

L1Qp 131.56 4.08 96.54

RBF SMO 131.57 4.24 95.69

ISDA 132.14 4.05 96.30

L1Qp 130.31 4. 28 95.86

Polynomial SMO 6011.53 5.39 103.89

ISDA 7399.48 8.93 104.61

L1Qp 3330.11 6.39 152.32

Table 2 
MSE of ANN models for coliform bacteria with various training 
algorithms, hidden layer sets, and normalizations

ANN
Hidden 
layers

MSE (CFU/100 mL)

Raw data Min-Max z-score

1 2 3 4 5

Feedforward 10 137.66 3.04 83.92

20 84.57 2.02 93.31

50 132.13 3.25 90.11

Cascade-forward 10 106.42 2.98 88.07

20 92.81 2.65 139.47

50 98.91 4.68 73.76

Layer-recurrent 10 97.58 4.04 70.36

20 122.50 2.43 74.15

50 106.70 3.85 87.05

model without any normalization. Similar significant 
improvements were produced in the other configu-
rations of both ANN and SVM models. Interestingly, 
however, the data normalizations failed to improve 
the performances of the models for E. coli, as the 

least MSE rather increased from 0.07 CFU/100 mL 
(for the model without data normalization) to 2.48 
CFU/100 mL (with min-max normalization) and 70.19 
CFU/100 mL (with z-score normalization) in the ANN 
models. The corresponding least MSEs in the SVM 
models similarly increased from 0.14 CFU/100 mL to 
3.75 CFU/100 mL and 102.81 CFU/100 mL. This may 
be due to the significant disparities in the character-
istics of the actual observation data for the two faecal 
indicator organisms (56% and 84% of data points for 
coliform bacteria and E. coli respectively were zeros). 
It is difficult to train a model when the output data set 
is full of zeros. However, this is the typical nature of 
the occurrence of these indicator organisms in raw 
water, thus, making the establishment of a reliable for 
their prediction necessary in drinking water supply.

Further, for each normalization method, the MSE val-
ues for the three ANN training algorithms are approx-
imately similar. The least MSE (2.02 CFU/100 mL) of 
the coliform bacteria model under the min-max data 
normalization was close to values achieved for both 
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the cascade forward (2.65 CFU/100 mL) and layer-re-
current (2.43 CFU/100 mL) architectures with 20 sets 
of hidden layer neurons. The overall precision of the 
regression SVM models were slightly lower than the 
ANN models (due to larger MSE values). For instance, 
while a least MSE of 2.02 CFU/100 mL was achieved 
with the feedforward ANN with min-max normal-
ization, the corresponding value in the regression 
SVM model was approximately twice this MSE (4.05 
FCU/100 mL) achieved with the RBF algorithm. Simi-
larly, with the z-score normalization method, slightly 
higher MSE values were achieved in the regression 
SVM models compared with the ANN models, as 
shown in Tables 2 to 5.

Results of model sensitivity analysis

The sensitivities of the various physical and chemical 
water quality parameters to the performances of the 
ANN and regression SVM models in the prediction of 
faecal indicator bacteria in raw water are shown in 
Fig. 5. Raw water turbidity, colour and alkalinity had 

Table 5 
MSE of regression SVM models for E. coli with different training 
algorithms, kernel functions, and normalizations

SVM Solver
MSE (CFU/100 mL)

Raw data Min-Max z-score

1 2 3 4 5

Linear SMO 0.14 6.24 113.08

ISDA 0.14 6.21 113.06

L1Qp 0.14 6.25 113.14

Gaussian SMO 0.14 4.01 102.98

ISDA 0.14 3.75 103.14

L1Qp 0.14 4.21 102.99

RBF SMO 0.15 4.09 102.81

ISDA 0.14 3.91 104.08

L1Qp 0.14 4.31 103.91

Polynomial SMO 256.84 6.16 104.09

ISDA 1399.45 6.95 106.36

L1Qp 175.47 6.63 105.48

the greatest influence on the prediction of both coli-
form bacteria and E. coli. For instance, by removing 
turbidity from the ANN models (Fig. 5 A), the MSE val-
ues increased from 2.02 CFU/100 mL to 2.47 CFU/100 
mL and from 2.48 CFU/100 mL to 2.95 CFU/100 mL, 
respectively, for coliform bacteria and E. coli predic-
tions. These correspond to 21% and 19% increases in 
the MSEs compared with the models with all the input 
variables. The corresponding percent increases in the 
MSEs resulting from the removal of colour and alka-
linity were approximately 18% (for coliform bacteria), 
19% (for E. coli) and 23% (for coliform bacteria), 22% 
(for E. coli), respectively. Similar increases in the vari-
ous MSEs were obtained in the SVM models as shown 
in Fig. 5 (B). However, the magnitudes of the increases 
were considerably higher in the SVM models. In addi-
tion, the importance of water temperature on the pre-
diction of the faecal indicator bacteria in both models 
is evident from the increases in the MSEs of up to 14% 
for coliform bacteria and 12% for E. coli. The water 
quality parameter that showed the least sensitivity in 
the predictions was the water pH, with MSE increas-
es of approximately 3% (ANN models) and 2% (SVM 
models), and the changes were similar in both coli-
form bacteria and E. coli prediction models.

Modelling the occurrence of faecal indicators in drink-
ing water sources enables early warning information 
to the water utility operators prior to the treatment of 
raw water, such that treatment processes can be op-
timized where necessary. Detection methods of fae-
cal indicator organisms (FIBs) in raw water are still 
being improved, mainly to reduce the detection time. 
Moreover, conventional weekly sampling and analysis 
of FIBs in raw water at water utilities may not give the 
actual contamination levels, particularly during heavy 
rainfall (Tryland et al., 2011). For this reason, public 
health burdens associated with waterborne outbreaks 
occurring after peak rainfall events can be reduced if 
FIBs in raw water are estimated in ‘real time’ on a dai-
ly basis before treatment. ANN and regression SVM 
are highly efficient machine learning techniques that 
are capable of learning complex relationships among 
variables in a system. Enhancing the applicability of 
these data-driven techniques in drinking water sup-
ply systems require clarification of the strengths and 
weaknesses of various architectures that can be used 
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Fig. 5 
Sensitivity of input parameters to the performances of the ANN models (A) and regression SVM models (B)  370 

 371 
ba

to reliably estimate the concentrations of FIBs in raw 
water. Results of this study distinctly indicate that 
while various algorithms of ANN and regression SVM 
and input data normalization methods adequately ac-
commodate the variations in typical FIBs observed 
in raw water, a simple feedforward ANN model with 
10 hidden layer neurons is enough for real time pre-
diction of FIBs in raw water, with lower chances of 
overfitting. In addition, as shown in Figs. 3 and 4, ap-
plying normalizations on the input data sets does not 
necessarily improve the performances of both the 
ANN and regression SVM models. Compared to the 
z-score normalization, the use of the minimum-max-
imum method results in better model performances, 
particularly by the MSE measure. The main limitation 
of the models applied in this study is the absence of 
a validation stage, where all the models would be 
tested on different data sets. However, the objective 
at this stage of the study was more focused on es-
tablishing the simplest model configuration for use in 
this respect, as well as clarifying the effects of differ-
ent solution algorithms, hidden layer sets, and nor-
malization methods on the accuracies of the models.

Conclusions
The model results showed that all the three ANN 
training algorithms adequately estimated the counts 
of the faecal indicator organisms in raw water with 

comparable efficiencies. Similarly, no distinct disparity 
in model performances were observed when different 
training algorithms were applied to the regression SVM. 
In the ANN models, acceptable estimates were achieved 
with 10 and 20 sets of hidden layer neurons. Although 
networks were faster with 50 hidden layer neurons in 
all configurations used in this study, extreme variations 
in the model estimates were observed in this case. 
Further, although the two data normalization methods 
applied in this study considerably improved the perfor-
mances of the ANN and SVM models for the coliform 
bacteria, they failed to improve the accuracies of E. coli 
prediction using both machine learning techniques. 
Moreover, the feedforward network was more efficient 
in estimating the counts of the faecal indicator organ-
isms in raw water when no normalization was applied 
to the input data set. The effect of the normalization 
methods on the performances of the machine learning 
techniques in predicting faecal indicator organisms in 
raw water may depend on the data characteristics of 
the observed indicator bacteria used as model output. 
Amongst the various kernel functions applied to the re-
gression SVM, the RBF and the Gaussian functions were 
more efficient, with the least MSE errors. Finally, results 
of this study suggest that compared with regression 
SVM, ANN is highly efficient in estimating necessary 
variations in FIBs in raw water from measured values 
of physico-chemical parameters of raw water with low-
er mean square prediction errors. Although regression 
SVM adequately estimates the variation in the indicator 
organism with MSE comparable with ANN, SVM fails to 
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estimate periods of intense variations in the level of the 
indicator organism in raw water, an information that is 
highly desired for optimizing treatment in water utility 
services.
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Mikrobinio vandens kokybės prognozinė  
analizė naudojant algoritmus
Hadi Mohammed, Andreas Longva, Razak Seidu
Vandens ir aplinkos inžinerija, Inžinerijos ir gamtos mokslų fakultetas, Norvegijos mokslo ir technologijų 
universitetas (NTNU), Ålesund, Larsgårdsvegen 2, 6009 Ålesund, Norvegija

Atsižvelgiant į tai, kad vis dažniau naudojamos algoritmais paremtos priemonės, skirtos naudoti van-
dens kokybės stebėjimui, didinant jų pritaikymą visame pasaulyje, reikia ištirti jų pajėgumus ir apri-
bojimus pagrindiniuose vandens kokybės nustatymo grandinės aspektuose. Šiame tyrime išsamiai 
įvertintos trijų dirbtinių neuroninių tinklų (angl. ANN) mokymo algoritmų ir trijų regresijos palaikymo 
vektoriaus mašinos (SVM) sprendimų, turinčių skirtingų branduolio funkcijų, rezultatai vertinant fekalin-
ių indikatorinių bakterijų skaičių iš išmatuotų fizikocheminio vandens kokybės įrašų parametrai. Be to, 
įvesties duomenims buvo taikomi skirtingi normalizavimo metodai, siekiant nustatyti jų poveikį ANN ir 
SVM modelių veikimui. Persiuntimo ir kaskadinio tipo pirmtakų algoritmai duoda mažiausias vidutines 
kvadratines klaidas (MSE) reikšmes tarp įvairių ANN modelių konfigūracijų. Skaičiavimuose nenustatyta 
jokio skirtingo SVM regresijos sprendėjų rezultatų. Regresijos SVM branduolio funkcijoms, radialinės 
bazinės funkcijos (RBF) ir Gauso branduolio funkcijos sukūrė mažiausias MSE vertes. Tiek ANN, tiek 
regresijos SVM yra panašūs sugebėjimai prognozuoti fekalijų indikatoriaus organizmo koncentraciją 
užterštame vandenyje. Tačiau ANN modeliai buvo veiksmingesni vertinant intensyvius indikatorinių or-
ganizmų pakitimus užterštame vandenyje.

Raktiniai žodžiai: mechanizmo algoritmas, poslinkis į priekį, kaskados į priekį, sluoksnio pasikartoji-
mas, regresijos SVM, koliforminių bakterijų skaičius.
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