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The effect of organotin compounds (OTs) on the accumulation of the lipid peroxidation (LPO) carbonyl by-prod-
ucts, which react with thiobarbituric acid (TBARS) in fresh and cryopreserved sperm of Russian sturgeon, 
was studied. It was found that incubation (1 hour) of Russian sturgeon sperm with OTs (CH3SnCl3, (CH3)2SnCl2, 
(CH3)3SnCl, (n-C4H9)2SnCl2, (n-C4H9)3SnCl, (C6H5)2SnCl2, (C6H5)3SnCl) in concentration 0.1 mM led to the promotion 
of the accumulation of TBARS in native semen. Dimethyl- (DMT) and diphenyltin dichlorides (DPT) exhibited the 
greatest promoting activity, and the LPO level of both native and cryopreserved sperm of Russian sturgeon, 
including those in modified Stein’s cryomedium, increased in the presence of these compounds. It was found 
that Russian sturgeon’s cryopreserved sperm had lower sensitivity to the promotion of sperm LPO by DMT and 
DPT compared with the native sperm. The protective effect of Stein’s cryomedium decreased in the presence of 
the studied OTs. The results suggest that accumulation of OTs by gonad of fish is another stress factor affecting 
the cell productivity in the cryopreservation process.
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Introduction
Russian sturgeon (Acipenser gueldenstaedtii Brandt, 
1833) is among those commercially precious sturgeon 
species in the Caspian Sea, the natural populations of 
which have drastically declined in the last decade. One 
of the most significant factors influencing the popula-
tion of sturgeons in the Caspian Sea is contamination 
of water and sediment by various pollutants, which 
are disrupting for the migration and reproduction of 
the sturgeons (Basu and  Janz, 2013). 

Due to their benthic nature, sturgeons are very sensi-
tive to contaminants (Miandare et al., 2016) including 
organotin compounds (OTs), which are highly toxic 
persistent organometallic xenobiotics in the envi-
ronment. At the same time, OTs are widely used in 
several commercial applications. The extensive use 
of trisubstituted butyl and phenyl derivatives of tin as 
biocides in antifouling systems on ships has led to an 
unprecedented contamination of the marine environ-
ment at a global scale. Methyltins are probably pro-
duced by biomethylation of the commercial OTs in the 
environment (Bridou et al., 2018). Thus, OTs are ha-
bitual components of aquatic ecosystems. These ОTs 
effectively accumulate in molluscs (Antizar-Ladislao, 
2008), which are the preferred foodstuff of sturgeons. 

Elevated levels of heavy metals and persistent organic 
pollutants in water, sediments, bottom organisms and 
some fish species (Mirnategh et al., 2018), including 
sturgeons of the Caspian Sea (Kajiwara et al., 2008), 
were considered in some studies. However, not much 
is known about the status of OTs contamination in the 
sturgeons from the Caspian Sea.

Despite the fact that since 2008 the use of tributyl tin 
compounds as a biocidal additive in anti-fouling coat-
ings was prohibited in the EU due to the accumulation 
of these compounds by bottom sediments, they contin-
ue to enter water bodies (Chen et al., 2019). OTs can be 
easily absorbed into the tissues of aquatic animals with 
bioconcentration factors of 102–104 (Chen et al., 2017) 
and are considerably persistent, including persistence 
in hydrobiont gonads (Hu et al., 2009). The reproductive 
system of aquatic organisms is the most sensitive to 
the toxic effects of xenobiotics. Spermatozoa, including 
cryopreserved sperm, are used for the ecotoxicological 

evaluation of aquatic environment (Fabbrocini et al., 
2013). Despite the sturgeon’s endangered status in 
the Caspian Sea, there are only a few studies dealing 
with relative sensitivity of sturgeons to OTs (Graceli et 
al., 2013). Literature data indicate the relative stability 
of sturgeon sperm (Siberian sturgeon and starlet) to 
the negative effects of such heavy metals as mercury 
and cadmium (Dietrich et al., 2012). It was found that at 
presence of the OTs the mobility of hydrobionts sperm 
reduced (Shim et al., 2006) and its conservation also 
was inferior (Li, 2001); however, this problem has not 
been studied in view of the tasks of cryobiology.

Drastic declines in sturgeon natural populations have 
led to sturgeons classifying as an endangered breed. 
Thus, sturgeon aquaculture has gained importance 
over the past years. The exposure of fish to industrial 
and agrochemical origin pollutant-containing water is 
one of the factors affecting the quality of fish sperm in 
aquaculture. OTs can enter fish sperm during artificial 
fish farming due to their accumulation in the germ 
cells of spawners, caught in natural water bodies pol-
luted with toxicants (Okoro et al., 2011). Artificial fish 
food, used in sturgeon industrial breeding, may also 
contain OTs (Saïdi et al., 2013). In addition, possible 
leaching of dimethyl-, dibutyltin dichlorides used in 
aquaculture polyvinyl chlorine (PVC) and chlorinated 
polyvinyl chloride (CPVC) plastics used as stabilisers 
of polymers (Matthews, 1996) should be taken into ac-
count. Although OTs are leached out in very low con-
centrations, it is very probable that they accumulate in 
a lipid-rich sperm of fish. Taking into account that an 
increase of lipid peroxidation intensity (LPO) may be 
one of the mechanisms of a negative effect of OTs on 
hydrobiont sperm, the effect of organotin compounds 
on the LPO level in Russian sturgeon fresh and cryo-
preserved sperm was investigated in this study. 

Methods

Reagents and solutions

Organotin compounds (CH3SnCl3, (CH3)2SnCl2, 
(CH3)3SnCl, (n-C4H9)2SnCl2, (n-C4H9)3SnCl, (C6H5)2SnCl2, 

(C6H5)3SnCl) and all other reagents were purchased 
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from Sigma–Aldrich. In this work, the modified Stein’s 
cryomedium (130 mM NaCl, 5 mM KCl, 20 mM NaHCO3, 
5.5 mM glucose, 12.5% egg yolk, 12.5% DMSO) (Osi-
pova et al., 2014) was used. 

Sperm collection

Russian sturgeon sperm was received from Bertyul-
sky, Lebyazhyi and Sergiyevsky sturgeon hatcheries of 
the Low Volga. Tests were carried out during the period 
from 2016 to 2018. Every year naturally mature fish (8–
10 male fish, each weighing 15–18 kg (17.0 ± 0.9 kg), 
10–12 years old) were obtained during the period of the 
spawning migration (from the middle of April). Sper-
miation in males was induced by a single injection of 
surfagon (Mosagrogen LTD, Russia). The dose was cal-
culated per 1.0 kg of male body weight and amounted 
to 5.0 mg/kg at water temperature 12°C. Sperm was 
collected by a catheter. Sperm samples were placed on 
ice and transported to the laboratory.

Incubation of semen with organotins

The CH3SnCl3, (CH3)2SnCl2, (CH3)3SnCl, (n-C4H9)2SnCl2, 
(n-C4H9)3SnCl, (C6H5)2SnCl2, (C6H5)3SnCl were diluted in 
the sturgeon semen. The resulting mixture was incu-
bated for 1 h at 5°C.

General procedure for sperm freezing and thawing

Sperm cryopreservation was carried out according to 
the methods of Tsvetkova et al. (Tsvetkova et al., 1997). 
The diluted with the cryoprotective medium sperm 
was distributed in labelled 1.5 mL Eppendorf tubes and 
placed in a refrigerator for 40 min for equilibration (Ko-
peyka et al., 1981). The ratio of sperm and cryomedi-
um was 1:1. After equilibration, deep freezing was per-
formed in three stages in a programmable freezing box 
with an electronic thermometer: from 5°С to −15°С with 
the rate 2−5°С/min (freezing time 2–5 min); from −15°С 
to −70°С with the rate 20–25°С/min (freezing time 
about 3 min); deep freezing in liquid nitrogen. Thawing 
of sperm was performed in a water bath during 30–40 s 
at 38–40°C. 

Determination of the accumulation level of TBARS in 
Russian sturgeon sperm

The intensity of sperm lipoperoxidation was assessed 
by the accumulation of carbonyl oxidation by-products, 

which react with thiobarbituric acid (TBARS), using 
the traditional method as described previously (Osi-
pova et al., 2017; Polovinkina et al., 2019). The content 
of TBARS was expressed as nanomoles per 109 cells. 
In experiments of TBARS determination before cryo-
preservation (without cryomedium), 1 mL of sperm 
was used. In experiments of TBARS determination 
with cryomedium before and after cryopreservation, 
the diluted sperm, the quantity of which was equiva-
lent to 1 mL of undiluted sperm, was applied. 

a before cryopreservation without cryomedium

To 156 mL of 1.2% solution of KCl at 0–4°C, 8 mL of 
sturgeon sperm without the addition of tin compounds 
(control) or with the addition of tested OTs were add-
ed. The resulting mixture was incubated for 1 h at 5°C, 
and the 2 mL probes of a mixture were taken into the 
plastic tubes (4 mL) for centrifugation. 0.1 mL of 2.6 
mM solution of ascorbic acid, 0.1 mL of 40 mM Mohr’s 
salt, and 1 mL of 40% solution trichloroacetic acid 
were added to each probe. The tubes were placed for 
10 min in a water bath at 37°C and then were centri-
fuged for 10 min at 3,000 g. On the next step, 2 mL of 
supernatant were transferred to clean tubes, 1 mL of 
0.8% solution of thiobarbituric acid was added, and the 
tubes were placed into a boiling water bath for 10 min 
and then were cooled to the room temperature (25°С). 
After cooling, 1.0 mL portions of chloroform were add-
ed to the tubes to obtain the transparent solutions and 
these probes were centrifuged at 3,000 g for 15 min. 
Supernatant liquid was collected, and extinction of the 
probe was measured using SF-103 spectrophotome-
ter at 532 nm; the test probe was taken as a standard. 
The calculation was performed by the formula:

X=(E ˣ 3 ˣ 3.2)/(0.156 ˣ 2)

where X (nmol) is the quantity of TBARS in native 
sperm; E is the extinction factor of the probe; 3.2 mL is 
the total volume of sperm from the tested fish; 2 mL 
is the volume of supernatant used for TBARS determi-
nation; 3 mL is the total volume of probes; 0.156 is the 
extinction factor of the 1 nmol TBARS at 532 nm.

The effect of organotin compounds supplements on 
TBARS accumulation in the sperm species diluted by 
the modified Stein’s cryomedium was studied before 
cryopreservation during incubation of the compound 
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at room temperature for 1 h and after cryopreserva-
tion for 3 days at a temperature equal to −196°C.

b before cryopreservation and with cryomedium

1 mL of semen without the addition of tin compounds 
(control) or with the addition of tested OTs diluted with 
cryomedium (1:1) was mixed with 19.5 mL of cooled 
1.2% KCl solution. 0.1 mL of 2.6 mM solution of ascor-
bic acid and 0.1 mL of 40 mM solution of Mohr’s salt, 
1 mL of 40% solution of trichloroacetic acid were add-
ed to 2 mL of the mixture. The subsequent procedure 
was identical to the described in the previous case.

c after cryopreservation with cryomedium

The sperm without the addition of OTs (control) or 
with the addition of the tested organotin compound 
at 0.1mM concentration diluted by cryomedium (1:1) 
was frozen and thawed as described in General pro-
cedure for sperm freezing and thawing. After thawing, 
the sperm (2 mL) in a quantity equivalent to 1 mL of 
undiluted sperm was placed in tubes, then 0.1 mL of 
2.6 mM solution of ascorbic acid, 0.1 mL of 40 mM 
solution of Mohr’s salt, and 1 mL of 40% solution of 
trichloroacetic acid were added. The subsequent pro-
cedure was identical to the described in the section a.

Statistical analysis

The statistical analysis was performed using Statistica 
for Windows, Version 9.0 (StatSoft, Inc.), and the data 
were presented as mean ± SD. All experiments were 
repeated three times. TBARS concentrations in experi-
ment were analysed using an unpaired Student’s t test. 
Statistical significance was set up at p < 0.05.

Results and Discussion
Fish spermatozoa are sensitive to damage by ROS, 
since they contain large amounts of highly unsaturat-
ed fatty acids – substrates for reactive oxygen species 
(ROS), but possess limited endogenous antioxidant 
protection (Poli et al., 2004). In spermatozoa, ROS are 
generated endogenously as a by-product of normal 
aerobic metabolism, but they may also arise from 
reactions with exogenous sources, such as environ-
mental pollutants which can both depress the antiox-
idants capacity to remove oxyradicals or enhance the 

intracellular ROS formation (Regoli and Giuliani, 2014). 
LPO is a biomarker of oxidative stress. The results of 
Li et al. (2010b) suggested that LPO could be a more 
sensitive indicator for evaluating oxidative stress of 
fish spermatozoa compared with protein oxidation.

In the present work, it was found that incubation  
(1 hour) of Russian sturgeons sperm with OTs (CH3SnCl3, 
(CH3)2SnCl2, (CH3)3SnCl, (n-C4H9)2SnCl2, (n-C4H9)3SnCl, 
(C6H5)2SnCl2, (C6H5)3SnCl) in 0.1 mM concentration led to 
the promotion of TBARS accumulation in native se-
men (Fig. 1). The promotion effect of OTs upon oxi-
dation of oleic ((Z)-9-octadecenoic) acid (Petrosyan et 
al., 2002), sturgeon liver lipids (Antonova et al., 2008), 
lipids of fish feed (Osipova et al., 2017) by O2 has been 
previously found. Most of the carbonyl by-products 
derived from lipid peroxidation were toxic, since they 
could easily diffuse through membranes and could 
covalently modify important biomolecules far from 
their unmodified state (Negre-Salvayre et al., 2008). 

The promotion of the fish sperm LPO may be caused 
by the fact that the interaction of OTs with the first 
comparatively stable products of LPО (ROOH, R`OOR) 
breaks the Sn–C bond (Davies, 1997) and active alkyl 
radicals formed (Petrosyan et al., 2002). It was shown 
that in the case of (n-C4H9)3SnCl direct chemical com-
bination of organometallic xenobiotics with the first 
ROS, i.e., superoxide, which was mainly generated 
via autoxidation reactions or oxygen-dependent en-
zymatic reactions in aerobic cell, radicals also could 
form (Rivera et al., 1992).

The production of ROS in the presence of (n-C4H9)2SnCl2 

and (C6H5)3SnCl has been reported (Chantong et al., 
2014; De Castro et al., 2018). Literature data indicate 
that the activity of the antioxidant enzyme superoxide 
dismutase decreased under the action of (n-C4H9)2SnCl2 

(Weber et al., 1995). It should be also taken into ac-
count that sperm is particularly rich in mitochondria, 
which may predispose these cells to enhanced effects 
of OTs, because the mitochondria is the major cellu-
lar location for ROS generation upon stress (Doherty 
and Irwi, 2011). According to the data obtained in this 
work, the degree of promotion of sperm LPO by toxi-
cants decreases in the row:

(C6H5)2SnCl2 > (CH3)2SnCl2 > (n-C4H9)2SnCl2 > (CH3)3SnCl > 
CH3SnCl3 > (C6H5)3SnCl > (n-C4H9)3SnCl 
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Different levels of LPO of sturgeon sperm in the pres-
ence of OTs can be associated with different capacity 
of germ cells to accumulate toxicants. It is known, 
that Chinese sturgeons have a greater capacity to 
accumulate (C6H5)3SnCl relative to (n-C4H9)3SnCl than 
other fish species (Hu еt al., 2009).

According to the data obtained, the degree of LPO 
promotion in Russian sturgeon sperm in the presence 
of (n-C4H9)3SnCl, one of the most toxic xenobiotics in 
the natural waters, is lower than in the presence of 
(n-C4H9)2SnCl2. It has been reported that (n-C4H9)3SnCl, 
(C6H5)3SnCl had a high complex toxic effect on 
molluscs, and even at OTs concentrations in water as 
low as 1.0 ng/L, it could produce endocrine disrupting 
effects, inducing imposex in female molluscs (de 
Araújo et al., 2018).

(n-C4H9)2SnCl2 is a metabolite of (n-C4H9)3SnCl; thus, 
it is commonly found in tissue after exposure to 
(n-C4H9)3SnCl. This compound is used as a biocide 
to treat chickens for tapeworm and, since it is used 
in PVC production, it will leach into aquatic systems 
from pipes made of this plastic (Cima et al., 2003). 
It is considered that (n-C4H9)2SnCl2 has low toxici-
ty to aquatic organisms. The maximum permissible 
concentration (MPC) of this fishery waters pollut-
ant is 1.0 μg/L, which is 100 times higher than for 

Fig. 1. The effects of 1 h exposure of Russian sturgeon fresh sperm to organotins on TBARS level in sperm in vitro  
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(n-C4H9)3SnCl (The list of fish-farm standards, 1999). 
According to the results of our study, (n-C4H9)2SnCl2 
has a significant impact on the processes of LPO in 
Russian sturgeon sperm, increasing the level of accu-
mulation of secondary products of the LPO in sperm 
by 41%. Thus, the studies carried out in this work, as 
well as published data on the more significant toxic 
effects of dibutyltin dichloride on the immune system 
of fish compared with the effect of (n-C4H9)3SnCl (O 
‘Halloran et al., 1998), indicate that potential toxicity 
of (n-C4H9)2SnCl2 should be re-evaluated.

The highest promoting activity has been found for di-
methyl- (DMT) and diphenyltin (DPT) dichlorides, disub-
stituted OTs, which, presumably, are the most common 
organic derivatives of tin in biota, because they are 
formed during dealkylation of OTs and can also accu-
mulate in tissues with a high level of metabolic process-
es and increased lipid content (Harino et al., 2007). DPT 
is a metabolite of (C6H5)3SnCl, which, like (n-C4H9)3SnCl, 
is used in antifouling paints. Direct proportionality be-
tween the concentration of toxicant DPT and the level of 
TBARS in semen was found (Fig. 2).

Cryopreservation conditions may also cause an oxi-
dative stress, since sperm is exposed to cold shock 
and atmospheric oxygen during cryopreservation, 
which increases its susceptibility to lipid peroxidation 
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Fig. 2. Effect of various concentrations of DPT on the level of TBARS in Russian sturgeon native sperm

resulting from greater production of ROS (Li et al., 
2010а). Although low concentrations of ROS play an 
important role in sperm physiology (Bansal and Bilas-
puri, 2011), high concentrations of ROS cause sperm 
pathology (Gazo, 2013). LPO is the important factor for 
the evaluation of sperm quality (Cabrita et al., 2014). 

The effect of incubating sperm with toxicants (DMT, 
DPT) on the level of TBARS in defrosted semen after 
deep freezing was studied. In order to assess the ef-
fect of the cryomedium on the promotion of sperm 
LPO by tin compounds, experiments were carried out 
without the addition of a cryomedium and in the pres-
ence of modified Stein’s cryomedium. We previously 
carried out research on the impact of the cryomedi-
um composition on the level of LPO of Russian stur-
geon sperm at different stages of cryopreservation 
and it was found that the speed of LPO of the sperm 
reduced at all stages of cryopreservation, which was 
more efficient in the modified cryomedium (Osipova 
et al., 2016).

In our study, the level of TBARS in control increased 
significantly after 3 days of sperm storage (Table 1), 
which is in good agreement with literature data (Sha-
liutina et al., 2013). 

The present work demonstrated that DMT and DPT 
(0.1 mM) veraciously increased the level of the LPO 

Table 1.  Effect of the DMT and DPT on the TBARS level 
(nmol/109 sperm) in Russian sturgeon sperm without and in 
the presence of the modified Stein’s medium before and after 
cryopreservation 

Before 
cryopreservation

After 
cryopreservation

Control 1.50 ± 0.08 2.03 ± 0.08♦

Cryomedium 1.08 ± 0.07b
1.24 ± 0.08a

DMT + cryomedium 1.63 ± 0.08*b
2.12 ± 0.07*c

DMT 2.03 ± 0.08***
2.42 ± 0.08****

DPT + cryomedium 2.25 ± 0.07*b
2.55 ± 0.08*d

DPT 2.48 ± 0.03*
2.58 ± 0.07**

Control value without additives. The average values for a series of 
experiments are given.  

♦Differences from the control experiment group before 
cryopreservation (p < 0.0001). Differences from the control 
experiment group *(p < 0.00001); 
**(p < 0.00005); ***(p < 0.0001); 
****(p < 0.0005). 

Differences from the control experiment group without cryomedium 
a(p < 0.00001); b(p < 0.0005);  c(p < 0.005). dDifferences from the control 
experiment group (DPT after cryopreservation) (p > 0.05). The values 
are expressed as mean ± SD.



Environmental Research, Engineering and Management 2020/76/240

derived carbonyl by-products, which react with thio-
barbituric acid, in frozen/thawed sperm of Russian 
sturgeon after prior incubation of the fresh semen in 
these OTs for 1 h (p < 0.005). TBARS levels of frozen/
thawed Russian sturgeon sperm would be affected 1 
h after the aerobic exposure of fresh semen to DMT 
and DPT, which indicates a decrease in the sensitiv-
ity of Russian sturgeon cryopreserved sperm to the 
promotion of LPO under the studied disubstituted 
OTs, especially DPT; therefore this indicator cannot be 
used as a spermiotoxicity test. 

A statistically significant increase in the level of TBARS 
was found both in the control experiments and in the 
presence of DMT and DPT in comparison with the na-
tive sperm. In the control experiment without Stein’s 
cryomedium and xenobiotics after cryopreservation, 
the level of LPO increased by 35% (p < 0.0001), while 
in the presence of DMT and DPT, it increased by 20% 
(p < 0.00001) and 4% (p < 0.01), respectively, compared 
with the experiment before cryopreservation. Compar-
ison with the level of TBARS in the control experiment 
indicates the preservation of the promoting activity of 
tin compounds in cryopreserved semen. In the pres-
ence of DPT or DMT, the level of TBARS in defrosting 
sperm veraciously increases by 27% (p < 0.00001) and 
19% (p < 0.00001), respectively, relative to control after 
cryopreservation without cryomedium.

In the control experiment without a toxicant, as well 
as in the presence of DMT and DPT, the addition of 

cryomedium to native sperm led to a decrease in 
TBARS by 28% (p < 0.00001), 20% (p < 0.00001)  and  
10% (p < 0.00001), respectively. Thus, in the presence 
of toxicants, the protective effect of Stein’s cryomedium 
is reduced, which, presumably, can be explained by the 
fact that DMT and DPT can interact with the components 
of the cryomedium used, for example, with DMSO (the 
latter is widely used, in particular, in operations with 
sturgeon sperm). DMSO can capture hydroxyl radical, 
which has the most injuring effect on the membranes 
of sperm cells.

With the addition of cryomedium, the level of TBARS 
in semen defrosted after freezing was significantly 
reduced in the experiment where no toxicants were 
added, as well as in the presence of DMT, by 39%  
(p < 0.00001) and 13% (p < 0.005), respectively. The 
decrease in the level of secondary products of LPO of 
defrosted sperm with the addition of cryomedium in 
the presence of DPT was doubtful (p > 0.05). 

Conclusions 
Our results suggest that the accumulation of OTs by 
gonad of fish is the stress factor affecting the cells 
in the process of cryopreservation. Organotins can 
induce oxidative stress in sturgeon sperm in vitro, 
which may decrease the quality of gametes, which in 
turn may affect fertilisation success.
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