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In Greece, 5.8 million tons of municipal solid wastes (MSW) are produced annually, of which 2.47 million tons are 
bio-wastes. Composting is an alternative treatment of bio-wastes instead of landfill. Τwo composting plants operate 
in Greece, one in Ano Liossia (capacity 1,200 tons/day, producing 120 tpd compost) and another in Chania (capacity 
70,000 tons/year, producing 20,000 tpa compost). In addition, since 2018, the first integrated waste management plant 
was set off in the region of Kozani (capacity 120,000 tons/year). An alternative utilization of the compost, produced 
in the latter plant, was investigated in this study. In particular, instead of using compost as fertilizer, the energy re-
covery from this bio-waste was attested. Utilization of compost of MSW for energy production purposes has rarely 
been studied in the literature. Several blends of compost with lignite were prepared and their energetic potential 
was determined. Proximate analyses and gross calorific value (GCV) determination were conducted. Wastes and bi-
omass-based fuels differ in many ways from fossil fuels. The CLOF sample revealed the highest GCV and the lowest 
ash content than all analyzed samples. Based on all analytical determinations, compost and its mixtures with lignite 
could be regarded suitable for energy recovery by thermal processes, such us combustion. Further studies should be 
done including emission analysis, ash deposition during combustion (corrosion, slagging and fouling).
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Introduction
The issue of municipal solid waste (MSW) management 
is receiving major environmental concerns worldwide. 
In an attempt to reduce the environmental impacts of 
biodegradable wastes, mechanical biological treat-
ments (MBTs) are being used as a waste management 
process in many countries. MBT plants attempt to me-
chanically separate biodegradable and nonbiodegrad-
able components. Nonbiodegradable components are 
then sent for reprocessing or landfilled, whereas the 
biodegradable fraction is reduced through composting 
or anaerobic digestion, resulting in a compost-like out-
put (Donovan et al., 2010). In Europe, bio-waste is about 
32% by weight of the total municipal waste. Greece, on 
the other hand, has the highest share of bio-waste in 
the total municipal waste, accounting for about 40% by 
weight (Interreg Europe, 2017). In Greece, only 2% of 
2.47 million tons of bio-wastes are composted (EEA, 
2016). 

Compost of MSW has been used worldwide as a soil 
amendment or organic fertilizer (Cerda et al., 2018; Wei 
et al., 2017; Wong et al., 2016; Zhang and Sun, 2016; 
Zhang et al., 2013; Donovan et al., 2010) but has been 
rarely studied as a fuel (Malatak et al., 2013). In Greece, 
until recently, two composting plants have been in op-
eration, one in Ano Liossia (capacity 1,200 tons/day, 
producing 120 tpd compost) and another in Chania (ca-
pacity 70,000 tons/year, producing 20,000 tpa compost). 
In addition, since 2018 the first integrated waste man-
agement plant has been set off in the region of Kozani 
(capacity 120,000 tons/year). Compost can be a great 
challenge to waste-to-energy practice, as over 46% of 
the global solid waste is organic waste (Hoornweg and 
Bhada-Tata, 2012). Energy research is at the search of 
renewable resources. One traditional renewable energy 
resource is biomass. On the other hand, one of the pos-
sible energy sources is biodegradable municipal solid 
wastes (Ball et al., 2017). Since biomass undergoes par-
tial aerobic decomposition in the process, it is possible 
to utilize the heat that is produced during the compost-
ing process (Smith and Aber, 2018). During compost-
ing, part of the organic matter, i.e., potential combus-
tible substance, decomposes and along with change in 
water content an alteration of the fuel characteristics 

is inevitable (Marron, 2015; Vandecasteele et al., 2016). 
Compost still has the majority of combustible matter, 
so there is a chance of producing composts in order 
to be used as a fuel for direct combustion, gasification 
or pyrolysis (Finney et al., 2009). Besides composting, 
MSW incineration has many advantages like waste 
volume reduction (by 90%) and destruction of organic 
compounds, viruses and bacteria. Waste incineration 
transforms heterogeneous wastes into more homoge-
nous residues (flue gas, fly ash and bottom ash) (Zhang 
et al., 2008).

Coal fired power plants are still the largest source of 
electricity generation in Greece, contributing about 55% 
of electricity generation (Vasileiadou et al., 2018), and 
will keep leading until 2050 (Reitz, 2018).

Coal-waste co-combustion is recognized as an envi-
ronmentally friendly and economic approach for both 
waste remediation and energy production, as this tech-
nique utilizes wastes for replacement of fossil fuels, de-
creasing landfills, and providing significant reduction of 
CO2, etc. (Sahu et al., 2014). Co-firing can use the infra-
structure which is associated with the existing fossil fu-
els-based power systems and requires only some cap-
ital investment. In Europe and in Greece, the transition 
to a post-lignite era has already begun. Thus, the utili-
zation of biomass/wastes as an alternative solid fuel is 
of great importance. In addition, the MSW is expected to 
increase in the next years and could be used for energy 
production. By waste-to-energy practice, Greece could 
enhance the waste management system reducing land-
fill that is the main current waste management practice.

Co-combustion of coal with wastes has been widely in-
vestigated in the last years but the option to utilize com-
post-like outputs as a fuel in lignite co-firing for energy 
production still has not been investigated. The aim of 
this study is to evaluate the potential of compost-like 
outputs samples of biodegradable municipal solid 
wastes, as an individual fuel or as a fuel in co-combus-
tion with lignite. For that reason, several blends of the 
compost-like outputs (CLOF) sample with the lignite 
(LIG) sample were prepared and their energetic poten-
tial was determined. Calorific value determination and 
proximate analyses were conducted.
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Sampling and Methodology
A CLOF sample was collected from the composting of 
the biodegradable fraction of bio-wastes from the West-
ern Macedonia first integrated waste management plant 
(EDADYM, Ellactor group) (Fig. 1a). The biodegradable 
fraction is mechanically separated and fed into closed bi-
oreactors where the material undergoes rapid compost-
ing. During rapid composting, biodegradable organic sub-
stances are easily microbiologically transformed within 
a short time using an air supply control procedure ad-
justed according to the requirements of biological treat-
ment. The bioreactor control system regulates air supply 
and temperature. The material exiting the bioreactors is 
located in trapezoidal shaped piles in a sheltered place 
and is regularly stirred to achieve the desired degree of 
maturation. The mature material is led to the refining 
unit where by mechanical means impurities are removed 
and the final product is obtained (compost-like outputs 
or compost type A). The sample used in this study was 

prepared by mixing samples from the heaps of the final 
product of the refining unit, i.e., compost-like outputs. 

Furthermore, a representative LIG sample from the near-
by Kozani lignite mines of the Western Macedonia area 
was collected (Fig. 1c). The CLOF and LIG samples were 
firstly air-dried for two weeks. Afterwards, both samples 
were ground to size less than < 1 mm (Fig. 1b). Eventu-
ally, both samples were dried in an oven at 80oC for 24 
hours and LIG blends with the CLOF sample in different 
proportions (10–20–30–40–50–60–70–80–90 wt%) were 
prepared (Fig. 1d). The raw CLOF sample and the raw LIG 
sample and their blends were proceeded for proximate 
analysis (moisture, ash, volatile matter and fixed carbon 
contents) and gross calorific value determination (GCV).

Proximate analysis was performed with a LECO TGA 701 
device, based on ASTM D7582 standard (ASTM D 7582-
15, 2015). The determination of gross calorific value was 
made with the LECO AC-500 isoperibol bomb calorimeter, 
according to ASTM D5865-13 standard (ASTM D 5865-13, 
2013). All samples were analyzed in two replicates.

Fig. 1. a. CLOF sample before milling, b. CLOF sample after milling, c. lignite powder sample, d. blend CLOF-LIG (LIG: lignite, CLOF: com-
post-like outputs)
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Results and Discussion

Combustion characteristics of raw materials

Proximate analysis and GCV values of the raw materials 
(compost-like outputs sample and lignite sample) are 
shown in Table 1. The LIG sample has a higher moisture 
content (6.33 wt%) than the CLOF sample (4.95 wt%), 
which is similar to the moisture compost content (4.26 
wt%) that was reported by Malatak et al. (2018). How-
ever, this compost was different of CLO since it was a 

compost of straw, cattle manure, hay, leaves, wood 
chips, sludge from waste water treatment plant, saw-
dust, spoiled fruits and vegetables. 

Moisture content and particle size play an essential role 
in their combustion performance (Sahu et al., 2014; Suk-
sankraisorn et al., 2010). The ash content for the CLOF 
sample (26.77 wt%) is lower compared with the LIG sam-
ple (38.90 wt%). Typically, ash range in lignite is between 
10 wt% and 50 wt% and volatile content varies between 
35 wt% and 40 wt% (Mazumder, 2013). It is known that 
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organic wastes have high volatile matter and low fixed 
carbon values (Iordanidis et al., 2017; Vasileiadou et al., 
2017; Casado et al., 2016; Vamvuka and Sfakiotakis, 
2011; Varol et al., 2010). The volatile matter for the CLOF 
sample is 65.11 wt% while the lignite sample has a value 
of 42.93 wt%. The fixed carbon of the CLOF raw sample is 
3.17 wt% while the LIG sample has a value of 11.85 wt%. 

Table 1. Proximate analysis (moisture, ash, volatile matter and fixed carbon) and gross calorific value (GCV) of the raw materials (LIG: lignite, 
CLOF: compost-like outputs). All values are in wt%, except GCV (MJ/kg)

SAMPLE ID Moisture
(%)

Ash
(%)

Volatile
matter

(%)

Fixed carbon
(%)

GCV
(MJ/Kg)

LIG 6.33 38.90 42.93 11.85 12.68

CLOF 4.95 26.77 65.11 3.17 20.13

The GCV of the raw CLOF sample is 20 MJ/kg while 
the LIG sample has a value of 13 MJ/kg. Malatak et 
al. (2018) studied wood co-combustion with compost 
(mainly made from material like straw, cattle, manure, 
hay, leaves wood chips and sludge from waste water 
treatment plant, sawdust, spoiled fruits and vegetables). 
The GCV of that type of compost was approximately 

8 MJ/kg. The GCV of compost and wood mixture in 50% 
by weight are influenced equally by both components. 
Most of the previous studies regarding compost (Garau 
et al., 2019; Cerda et al., 2018; Wong et al., 2016) focus 
on composting processes and composition characteri-
zation but the GCV values of compost-like outputs have 
not been reported yet. Thus, the GCV value of the CLOF 
sample can be compared with GCV of various MSW. 
Iordanidis et al. (2017) experimentally studied the GCV 
of paper (14 MJ/kg), plastic (29 MJ/kg) and textile (16 
MJ/kg) in Greece. Antonopoulos et al. (2013) reported a 
similar GCV of MSW (plastic: 33 MJ/kg, paper: 16 MJ/
kg, textile: 17 MJ/kg). It can be concluded that the CLOF 
sample has obviously higher GCV than the above-men-
tioned wastes, except the plastic sample. 

Fig. 2 illustrates the proximate and GCV analytical results 
of the raw LIG and CLOF samples within the same graph. 
It can be observed that the CLOF sample has 1.5 times 
more volatile matter than volatile matter of the LIG sam-
ple. High volatile matter content indicates easy ignition of 
fuel. Fixed carbon is the solid fuel left in the furnace after 
volatile matter is taken off. The amounts of fixed carbon 
and volatile combustible matter directly contribute to the 
calorific value of the sample. Fixed carbon acts as a main 
heat generator during combustion. The ash content is 
important to the design of the furnace grate, combustion 
volume, pollution control equipment and ash handling 
systems of a furnace (Mishra, 2012). 

Combustion characteristics of lignite blends 
with compost-like outputs

Proximate analysis and the GCV of all CLOF blends with 
LIG are presented in Table 2. The blends with the low-
est moisture content are those with a proportion of 90 
wt% and 80 wt% CLOF, showing values of 4.77 wt% and 
5.01 wt%, respectively. The highest moisture content 
(approx. 6.50 wt%) is determined for the blend with 40 
wt% and 20 wt% CLOF. High ash content is displayed for 
the LIG blends containing 10 wt%, 20 wt%, 30 wt% and 
40 wt% CLOF showing values of 37.99 wt%, 36.22 wt%, 

Fig. 2. Graph of the proximate and GCV analytical results of the 
raw compost-like outputs and lignite samples (LIG: lignite, CLOF: 
compost-like outputs).
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Proximate analysis and the GCV of all CLOF blends with LIG are presented in Table 2. The blends with the 7 
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and 5.01 wt%, respectively. The highest moisture content (approx. 6.50 wt%) is determined for the blend with 40 9 
wt% and 20 wt% CLOF. High ash content is displayed for the LIG blends containing 10 wt%, 20 wt%, 30 wt% 10 
and 40 wt% CLOF showing values of 37.99 wt%, 36.22 wt%, 34.54 wt% and 33.06 wt%, respectively. Blends 11 
with 50 wt% and 70 wt% CLOF have a value of approximately 31 wt%. The lowest content of ash is found in 12 
blends with 90 wt%, 60 wt% and 80 wt% CLOF (approx. 28 wt%). The highest percentage of volatile matter 13 
(59.69 wt%) is revealed for the blend with 90 wt% CLOF. Blends with 80 wt%, 70 wt% and 60 wt% CLOF have 14 
a value of approximately 58 wt%. The blend with 10 wt% CLOF has the lower value of volatile matter (44.76 15 
wt%). 16 

The highest fixed carbon value (11.03 wt%) is displayed for the blend with 10 wt% CLOF, followed by 20 17 
wt% and 30 wt% (approx.10 wt%), followed by 60 wt%, 40 wt%, 50 wt% and 80 wt% (> 8 wt%). The lowest 18 
fixed carbon value (6.64 wt%) is revealed for the blend with 70 wt% CLOF.  19 

It is observed that as the content of CLOF is increasing in the mixture, the volatile matter value is also 20 
increasing and the ash content is decreasing. As it is expected, blends with higher percentage of CLOF have a 21 
lower moisture percentage as the raw CLOF sample has a lower moisture percentage (4.95 wt%) than the LIG 22 
sample (6.33 wt%). 23 

 24 
Table 2 Proximate analysis (moisture, ash, volatile matter and fixed carbon) and gross calorific value (GCV) of CLOF 25 

blends (LIG: lignite, CLOF: compost-like outputs) with lignite. All values are in wt%, except GCV (MJ/kg). 26 

SAMPLE ID 
Moisture 

(%) 
Ash 
(%) 

Volatile 
matter 

(%) 

Fixed 
carbon 

(%) 
GCV 

(MJ/Kg) 
CLOF10 LIG90 6.22 37.99 44.76 11.03 12.68 
CLOF20 LIG80 6.39 36.22 47.43 9.96 13.14 
CLOF30 LIG70 6.17 34.53 49.59 9.71 12.95 
CLOF40 LIG60 6.51 33.06 51.98 8.45 14.98 
CLOF50 LIG50 5.94 30.82 54.92 8.32 16.75 
CLOF60 LIG40 5.89 28.51 57.14 8.46 18.58 
CLOF70 LIG30 5.26 30.82 57.28 6.64 18.48 
CLOF80 LIG20 5.01 28.73 58.04 8.22 19.34 
CLOF90 LIG10 4.77 27.96 59.69 7.58 19.43 
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34.54 wt% and 33.06 wt%, respectively. Blends with 50 
wt% and 70 wt% CLOF have a value of approximately 31 
wt%. The lowest content of ash is found in blends with 
90 wt%, 60 wt% and 80 wt% CLOF (approx. 28 wt%). 
The highest percentage of volatile matter (59.69 wt%) is 
revealed for the blend with 90 wt% CLOF. Blends with 80 
wt%, 70 wt% and 60 wt% CLOF have a value of approx-
imately 58 wt%. The blend with 10 wt% CLOF has the 
lower value of volatile matter (44.76 wt%).

The highest fixed carbon value (11.03 wt%) is displayed 
for the blend with 10 wt% CLOF, followed by 20 wt% and 
30 wt% (approx.10 wt%), followed by 60 wt%, 40 wt%, 50 
wt% and 80 wt% (> 8 wt%). The lowest fixed carbon value 
(6.64 wt%) is revealed for the blend with 70 wt% CLOF. 

It is observed that as the content of CLOF is increasing in 
the mixture, the volatile matter value is also increasing 
and the ash content is decreasing. As it is expected, blends 
with higher percentage of CLOF have a lower moisture 
percentage as the raw CLOF sample has a lower moisture 
percentage (4.95 wt%) than the LIG sample (6.33 wt%).

The results of GCV and proximate analysis of all analyzed 
blends are illustrated in Fig. 3. Regarding the GCV of the 

blends, all LIG blends with CLOF reveal a higher GCV than 
the raw LIG sample. The blends with 90 wt% and 80 wt% 
CLOF exhibit the highest GCV of all samples (more than 
19 MJ/kg). Blends with 70 wt% and 60 wt% CLOF have a 
value of about 18.50 MJ/kg. The blend with 50 wt% CLOF 
has a value of 16.75 MJ/kg. Blends with the lowest GCV 
are the blends with 10 wt%, 20 wt% and 30 wt% CLOF 
having a value of almost 13 MJ/kg.

Although a linear correlation between CLOF content of 
blends and GCV values can be observed (Fig. 3), two 
samples (CLOF30 LIG70 and CLOF70 LIG30) slightly de-
viate from this trend. Similar deviation can be observed 
for the values of other parameters (ash content, etc.) of 
these two samples. This deviation can be attributed to 
the inherent inhomogeneity of the CLOF sample.

Lignite blends with compost-like outputs have not been 
reported yet but other results of studies related to coal 
co-combustion with wastes/biomass also showed high-
er concentrations of volatile matter as well as lower car-
bon content of biomass blends with coal than traditional 
fossil fuels (Iordanidis et al., 2017; Frazzitta et al., 2012; 
Atimtay and Varol, 2009; Cliffe and Patumsawad, 2001).

Table 2. Proximate analysis (moisture, ash, volatile matter and fixed carbon) and gross calorific value (GCV) of CLOF blends (LIG: lignite, CLOF: 
compost-like outputs) with lignite. All values are in wt%, except GCV (MJ/kg).

SAMPLE ID Moisture (%) Ash
(%)

Volatile matter
(%)

Fixed carbon
(%)

GCV
(MJ/Kg)

CLOF10 LIG90 6.22 37.99 44.76 11.03 12.68

CLOF20 LIG80 6.39 36.22 47.43 9.96 13.14

CLOF30 LIG70 6.17 34.53 49.59 9.71 12.95

CLOF40 LIG60 6.51 33.06 51.98 8.45 14.98

CLOF50 LIG50 5.94 30.82 54.92 8.32 16.75

CLOF60 LIG40 5.89 28.51 57.14 8.46 18.58

CLOF70 LIG30 5.26 30.82 57.28 6.64 18.48

CLOF80 LIG20 5.01 28.73 58.04 8.22 19.34

CLOF90 LIG10 4.77 27.96 59.69 7.58 19.43
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Fig. 3. Graph of the proximate and GCV analytical results of compost-like outputs blends with lignite (LIG: lignite, CLOF: compost-like outputs) 
in different proportions, wt%.

Conclusions
Different blends of lignite with compost-like outputs 
wastes and raw compost-like outputs wastes, of MSW, 
were studied in order to investigate their co-combustion 
behaviour. The raw CLOF sample revealed a higher GCV 
(about 20 MJ/kg) than the lignite sample (about 13 MJ/
kg). It was observed that as the content of compost-like 
outputs was increasing in the mixture, the gross calo-
rific value and the volatile matter were also increasing, 
while the ash content was decreasing. Regarding the 
calorific value of the blends, all blends reveal a high-
er gross calorific value than raw lignite. Blends with 
80 and 90 wt.% CLOF (CLOF80 LIG20, CLOF90 LIG10) 
reveal better combustion characteristics (higher GCV, 
lower ash content) than all other blends. Based on all 
analytical determinations, the energy utilization of com-
post-like outputs and their blends with lignite through 
combustion, may be possible with further processing 
of CLO (e.g., drying). Compost-like outputs combustion 
and co-combustion with lignite represent an attractive 
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were studied in order to investigate their co-combustion behaviour. The raw CLOF sample revealed a higher GCV 24 
(about 20 MJ/kg) than the lignite sample (about 13 MJ/kg). It was observed that as the content of compost-like 25 
outputs was increasing in the mixture, the gross calorific value and the volatile matter were also increasing, while 26 
the ash content was decreasing. Regarding the calorific value of the blends, all blends reveal a higher gross calorific 27 
value than raw lignite. Blends with 80 and 90 wt.% CLOF (CLOF80 LIG20, CLOF90 LIG10) reveal better 28 
combustion characteristics (higher GCV, lower ash content) than all other blends. Based on all analytical 29 
determinations, the energy utilization of compost-like outputs and their blends with lignite through combustion, 30 
may be possible with further processing of CLO (e.g., drying). Compost-like outputs combustion and co-31 
combustion with lignite represent an attractive option for reducing wastes, eliminating the use of fossil fuels and 32 
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