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Areas where the habitat is in contact with the forest represent danger and become a real concern for manag-
ers who need location tools to act and limit fire risks in these territories. In this context, our study focuses on 
determining and mapping the different types of wildland-urban interface (WUI) existing in the Zouagha forest. 
The methodology integrates four types of a housing structure, limited to a radius of 100 meters around each 
house and three classes of vegetation aggregation. The GIS tool maps and identifies twelve types of WUI in the 
study area. Our results show that WUI areas in the Zouagha forest increased rapidly over the last decade. New 
houses were the main cause for new WUI. In 2019, the number of buildings in the study area was 51% higher 
than in 2009. These urban areas are more exposed to wildfire risks due to their proximity to flammable fuels. 
The spatial analysis allows highlighting the WUI type most sensitive to a fire risk that needs the interventions of 
environment protection institutions to limit the damage of wildfires.
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Introduction
Forest fires are the most serious natural disasters 
and have heavy environmental, social and econom-
ical consequences in many Mediterranean countries 
including Algeria. Each year, around 1,700 forest fires 
burn 36,000 hectares of forests,which represent 0.9% 
of the forest patrimony of the country.  For example, 
the year 2017 hada great fire damage: a lot of injured 
fire-fighters, numerous burnt dwellings and more than 
53,984 ha (28,841 ha of forests, 10,398 ha of maquis 
and 14,745 ha of scrub) were burnt over the 36 provinc-
es of Algeria. These burnt areasare almost triple that 
were consumed by the fires in 2016, which represented 
18,370 ha, and that was due to adverse weather con-
ditions. The forest species mostly affected by this haz-
ard are Aleppo pine and cork oak, two resilient species 
because of their regenerative capacity. The origin and 
causes of these fires are little known and managers 
are limited in Algeria to the fire extinction phase, rath-
er than moving more towards management that com-
bines extinction and fire prevention techniques. 

According to Meddour-Sahar and Bouisset (2013), the 
pressure exerted by residents on or nearby the forests 
is at the origin of most large fires (those having an area 
over 100 ha), representing 3.2% of wildfires in Algeria. 
The urbanisation in forest area generates new spatial 
configurations called wildland-urban interfaces (WUI). 
They are defined as the area that can be significantly 
affected by the jump of the firebrands, which can cause 
secondary fires (Lampin-Maillet et al., 2010a). Several 
studies in Algeria have been carried out on forest fire 
(Madoui, 2002; Meddour-Sahar et al, 2008; Arfa et al., 
2009; Meddour-Sahar and Derridj, 2012; Benderradji et 
al., 2004). However, it is difficult to find precise data 
on the spatial location of the WUIs and their temporal 
dynamics. Studying the WUI is especially important in 
the context of wildfires because the majority of fires 
are concentrated in the WUI. On the other hand, veg-
etation near homes provides fuels that allow forest 
fires spread and threaten inhabited areas (Conedera et 
al., 2015; Lampin-Maillet et al., 2010a; Hammer et al., 
2007; Radeloff et al., 2005). 

The present study is the first attempt to characterise 
wildland-urban interfaces (WUIs) in eastern Algeria 

(province of Mila) and map their change over time 
using remote sensing and geographic information 
system technique. The development of an effective 
method for accurately mapping wildland-urban inter-
face would be necessary to act as quick as possible in 
order to limit the risk of wildfires.

Study area 
The study area is located in north-eastern Alge-
ria in the province of Mila, between 36º31’30”N and 
36º35’30”N latitude, and between 5º59’30”E and 
6º10’30”E longitude, at altitudes ranging from 483 to 
1,344 m above sea level (Fig.1). 
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Materials and methods
Data sources

The imagery data source used in this study is the 
Landsat 8 data acquired in July 2019, with a 30-metre 
spatial resolution. Landsat images were download-
ed from the United States Geological Survey (USGS) 
(https://earthexplorer.usgs.gov/). We selected the 
images of July period to minimise the possible occur-
rence of environmental condition.

Other data used in this study include topographic 
maps at a scale of (1/50.000) produced by the General 
Directorate of Forestry (GDF) and high resolution im-
agery of Google Earth. The data were used to digitise 
the forest limit and the residential houses.

To extract topographic variables (slope and aspect), 
we used digital elevation model (DEM) data provid-
ed by the NASA Shuttle Radar Topography Mission 
(SRTM) model, which is an open source. The resolu-
tion of SRTM is 30 m.

ArcGIS software (10.1 version)

It is a set of geographic information software (GIS) 
developed by the American company Esri (Environ-
mental Systems Research Institute). This software 
allowed us to acquire process and analyse geograph-
ic information. It was used here to combine different 
layers and to map results.

ENVI software (4.7 version)

Environment for visualizing images (ENVI) software 
(developed by Harris Geospatial Solutions, Broom-
field, Colorado, United States of America) is useful 
for the visualisation, analysis, and presentation of all 
types of digital imagery.

FRAGSTATS software (4.2 version)

FRAGSTATS is a computer software programme 
produced by the authors at the University of Mas-
sachusetts, Amherst (McGarigal et al., 2012). It is 
designed to compute a wide variety of landscape 
metrics for categorical map patterns. It allows par-
ticularly the calculation of an aggregation index (AI) 
on vegetation.

Methodology

Production of a land cover map

The land cover map of the study area was created on 

Table 1. Characteristics of the spectral bands used

Spectral band Wavelength (μm) Resolution (m)

Green 0.525–0.600 30

Red 0.630–0.680 30

Near infrared, NIR 0.845–0.885 30

the basis of the Landsat 8 image (path 194, rows 35), 
which has 9 spectral bands with a spatial resolution of 
30 m for bands 1–7 and 9, while band 8 has a spatial 
resolution of 15 m (panchromatic band). Three spec-
tral bands were used for image classification (Table 1).

The image classification was carriedout by using EN-
VI(version 4.7). A supervised classification technique 
with a maximum likelihood algorithm was applied. 
The Landsatimage was classified into four types of 
land covers based on the reflectance properties ac-
quired by satellite sensor data: cork oak forests, Al-
gerian oak forests, afares oak forests and urban land.
Training samples using ancillary datasets were taken 
as signature classes for classification. After super-
vised classification, post-classification sorting was 
performed to improve classification results. The clas-
sified images were then sieved, clumped, and filtered 
before yielding the final output. All forest vegetation 
classes obtained from image classification were 
merged into a single class of vegetation.

The classification image was exported to FRAG-
STATS4.2 software to generate the aggregation index 
of vegetation(AI) with 30m of spatial resolution. AI 
measures the degree of aggregation between forest 
patches (He et al., 2000) (Fig.2). It allows the quantifi-
cation of the landscape configuration which is related 
to fire behaviour (Galiana-Martin et al., 2011). AI is de-
fined by the following formula:

100
ii

ii

gMax
g

AI  (1)
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Where: gii is the number of contacts between the pix-
els of a class i;
Maxgii is the maximal number of contacts between the 
pixels of a class i.

To simplify the results, three classes of aggregation 
values (Fig.2) were carried out as it is illustrated below:

 _ AI = 0 corresponds to land covers different from veg-
etation;

 _ 0 < AI < 90% corresponds to discontinuous sparse 
vegetation;

 _ AI ≥ 90% corresponds to dense and continuous veg-
etation.

Wildland-urban interfaces mapping

Wildland-urban interfaces are areas where urban set-
tlements and wildland vegetation intermingle, mak-
ing the interaction between human activities and wild-
life especially intense in these areas (Calviño-Cancela 
et al., 2016). The WUIs were mapped according to 
the method of Lampin-Maillet et al. (2010a), which 
defines the WUI as the area within a 100-m radius 
around buildings at a distance of up to 200 m from 
wildland vegetation. This method integrates housing 
configuration and vegetation aggregation for fire pre-
vention. The method involves four steps.

Fig. 2. Illustration of structural vegetation types according to the 
values of aggregation index (AI)
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Step  1: the layer of houses was mapped from top-
ographic maps and from high resolution imagery of 
Google Earth. Houses are locatedin less than 200 me-
ters from forest boundary.

Step  2: the configuration of houses was quantitative-
ly defined and classified into four types of configura-
tion using buffer analysis of ArcGIS 10.1 software: 
 _ Isolated housing: this class corresponds to one to 

three houses. The distance between groups of hous-
es is more than 100 meters.

 _ Scattered housing: the distance between groups of 4 
to 50 houses is more than 100 meters.

 _ Dense clustered housing: this class includes one to 
ten houses but the distance between groups of hous-
es is more than 30 meters.

 _ Very dense clustered housing: this class corresponds 
to more than 10 houses. The distance between 
groups of houses is less than 30 meters.

Step  3: the vegetation structure was determined by 
measuring the aggregation index of vegetation (AI). As it 
was detailed previously, the AI emphasises the horizon-
tal continuity of vegetation. For our analysis, we selected 
three types of aggregation: high aggregation (forest veg-
etation), low aggregation (transition forest/agricultural 
uses) and zero aggregation (without forest vegetation).

Step  4: WUIs are delineated by a radius of 100 m 
around the types of housing (isolated housing, scat-
tered housing, dense clustered housing and very 
dense clustered housing) using spatial analysis tools 
in ArcGIS10.1 software. This distance takes into ac-
count the perimeter wherein fuel reduction opera-
tions can be imposed on home owners. The ArcGIS 
10.1 software maps the intersections between the 
four types of housing and three types of aggregation, 
thus characterising 12 types of WUI (Fig.3).

Method for mapping the wildfire risk index

A geographic information system (GIS) can be used ef-
fectively to combine different forest-fires causing factors 
for demanding the forest fire risk zone map. To produce 
the fire risk map, we used the method of ERTEN et al. 
(2004). This risk model for fire spreading is based upon 
a combination of remote sensing and GIS data such as 
topographic factors (slope, aspect), vegetation types, 
distance from roads and settlements (Fig.4). 
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Fig. 3. Flowchart illustrating the elements involved in classification of WUI types
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Fig. 4. Land cover, slope, aspect, distance from road and distance from settlement of the study area
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Land cover is the main factor that has been widely 
used for fire occurrence analysis because some types 
of vegetation are more flammable than others. The 
land cover map was obtained from the supervised 
classification of the Landsat 8 image developed in the 
previous step. 

The slope and aspect were extracted from the digital 
elevation model (DEM). They were selected because 
fires may travel fast in upward-slopes but slower in 
areas with downward slopes, whereas aspects may 
influence on wind speeds spreading fires. In terms of 
human-made factors, the distances from roads and 
distances from settlements were created by using 
the buffer function of ArcGIS software. The various 
distance measures were defined by basing on their 

Fig. 5. Workflow of methodology characterising WUIs

importance regarding forest fires, the radius of human 
activities and expert experiences. All the thematic 
maps were then reclassified into value intervals using 
ArcGIS reclassifying tool (Fig.5).

The equation used in the GIS to determine forest fire 
risk places is shown in equation (2):

RI = (7VT) + 5(S + A) + 3(DR + DS) (2)

Where: VT – indicates the vegetation type;

S – the slope factor;

A – the aspect variable;

DR – the distance factor from road;

DS – the the distance factor from settlement
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Results and Discussion 10 

 11 
Mapping of forest cover 12 

 13 
The classified forest cover maps of the Zouagha forest, obtained after pre-processing and the supervised 14 

maximum likelihood classifier, are given in Figure 6. Moreover, the surface area of each land cover class was 15 
estimated (Fig.7). 16 

 17 

 18 
Fig.6 Forest cover type distribution in the Zouagha forest 19 

 20 
The map highlights the dominance of cork oak forest with an area of over 1,681ha (rate of 55%). Algerian 21 

oak forests and afares oak forests occupied 31% and 10%, respectively, while built-up, urban land occupied only 22 
4% of the study area (Fig.7). This map highlights the clear dominance of forest formations, which were close to 23 
96% of the area of the forest and increased the risk of triggering the fires. 24 
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 3 
The aggregation index was calculated on the vegetation class from the supervised classification image. It 4 

informs about frequency of connections between pixels of the same class of landscape such as vegetation class. 5 
Figure 8 shows the spatial results obtained from the calculation of aggregation indexes (AI), which are recoded 6 
into three classes of vegetation structure (no aggregation, low aggregation and high aggregation). 7 
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Fig.8 Aggregation index (AI) of vegetation 10 

 11 
The high aggregation represented 81% of the study area, showing that the vegetation is always present in 12 

these regions with a great level of continuity. The low aggregation and no aggregation of vegetation occupied 13 
only 15% and 8%, respectively (Fig.9). The low aggregations indicate more open areas. 14 
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Fig.9 Proportion of the different classes of aggregation index (AI) 17 

 18 
The proportion of forest for both Amira Arres and Terrai Bainen municipality was 54%, but in the Tassala 19 

Lamtai municipality, it was 65%. Furthermore, no aggregation index covers an area varying between 35% and 20 
46% of the study area, indicating that these regions are devoid of vegetation (Fig.10). 21 
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Results and Discussion
Mapping of forest cover

The classified forest cover maps of the Zouagha for-
est, obtained after pre-processing and the supervised 
maximum likelihood classifier, are given in Figure 6. 
Moreover, the surface area of each land cover class 
was estimated (Fig.7).

The map highlights the dominance of cork oak forest 
with an area of over 1,681ha (rate of 55%). Algerian 
oak forests and afares oak forests occupied 31% and 
10%, respectively, while built-up, urban land occupied 
only 4% of the study area (Fig.7). This map highlights 

Fig. 6. Forest cover type distribution in the Zouagha forest

the clear dominance of forest formations, which were 
close to 96% of the area of the forest and increased 
the risk of triggering the fires.

The aggregation index was calculated on the vegeta-
tion class from the supervised classification image. It 
informs about frequency of connections between pix-
els of the same class of landscape such as vegetation 
class. Figure 8 shows the spatial results obtained from 
the calculation of aggregation indexes (AI), which are 
recoded into three classes of vegetation structure (no 
aggregation, low aggregation and high aggregation).

The high aggregation represented 81% of the study 
area, showing that the vegetation is always present 
in these regions with a great level of continuity. The 

Fig. 7. Distribution of the forest cover types in the study area
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Fig. 8. Aggregation index (AI) of vegetation

Fig. 9. Proportion of the different classes of aggregation 
index (AI)

low aggregation and no aggregation of vegetation oc-
cupied only 15% and 8%, respectively (Fig.9). The low 
aggregations indicate more open areas.
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Lamtai municipality, it was 65%. Furthermore, no ag-
gregation index covers an area varying between 35% 
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Fig. 10. Aggregation index proportion on the municipality case 
study area

The proportion of forest for both Amira Arres and Ter-
rai Bainen municipality was 54%, but in the Tassala 
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Figure 11 presents a map of a housing type in 2009. The number of buildings was 1,255 (75 isolated 6 

housings, 664 scattered housings, 261 dense clustered housings, and 255 very dense clustered housings 7 
corresponding to the most urban areas). 8 
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Wildland-urban interface location 13 

 14 
In 2009, WUIs covered an area of 1,171 ha, corresponding to 38% of the total study area. Based on the 15 

housing types, 15.4% of WUI were isolated housings, 58.4% were scattered housings, 21.8% were dense 16 
clustered housings, and 4.4% were very dense clustered housings. Based on the vegetation structure, 44% had an 17 
aggregation null, 29 had a low aggregation index and 27% had a high aggregation index (Fig.12). 18 
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Fig. 11. Map of housing types in 2009
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Housing type map

Figure 11 presents a map of a housing type in 2009. 
The number of buildings was 1,255 (75 isolated 

Wildland-urban interface location

In 2009, WUIs covered an area of 1,171 ha, corre-
sponding to 38% of the total study area. Based on the 
housing types, 15.4% of WUI were isolated housings, 
58.4% were scattered housings, 21.8% were dense 
clustered housings, and 4.4% were very dense clus-
tered housings. Based on the vegetation structure, 
44% had an aggregation null, 29 had a low aggre-
gation index and 27% had a high aggregation index 
(Fig.12).

Dynamics of wildland-urban interfaces

The dynamics of the wildland-urban interfaces in the 
Zouagha forest between 2009 and 2019 were studied 

housings, 664 scattered housings, 261 dense clus-
tered housings, and 255 very dense clustered hous-
ings corresponding to the most urban areas).

at the interface surface to identify the territories that 
have undergone the most significant changes and at 
the configuration of residential housing to identify the 
territories with the highest subject to the pressure of 
urbanisation.

Figure 13 shows gains and losses in WUI from 2009 
to 2019. Negative symbols in the statistics indicate a 
loss of surface. The major changes include gains of 
WUI (293.04 ha, or a percentage of 89.08%). The dense 
clustered housing and the high aggregation index had 
the highest amount of gains in 10 years (+61.2 hec-
tares). Furthermore, 20.7 hectares of the isolated 
housing and aggregation null and 15.21 hectares of 
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Fig. 13. Gain and losses (in ha) in WUI from 2009 to 2019
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Fig. 12. Wildland-urban interface in 2009
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scattered housing and the low aggregation index were 
lost during the same period (Fig.13). These gains and 
losses translated into an increase in the amount of 
building and the WUI type transition.

Figure 14 shows the WUI transition between 2009 and 
2019. The first remark is that all transitions are only 
made for WUIs with a zero aggregation index. Based 
on the analysis, 72.69% of WUI areas were remark-
ably unchanged over time. In absolute terms, isolat-
ed housing suffered from an estimate loss of 5.91% 
of area between 2009 and 2019. It is converted into 
scattered and dense clustering housing. Besides, 
16.18% of the total area was converted from scattered 
housing to isolated, dense and very dense clustering 
housing. Meanwhile, 4.14% were reduced in 2019 and 
replaced by isolated housing and the same happened 
with very dense clustered housing where 1.01% was 
transformed into dense clustered housing.
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The number of houses in the area increased sub-
stantially from 1,255 in 2009 to 1,895 in 2019 with an 
estimated building gain of 640 houses per 10 years. 
The building gains of the different types of housing 
are the following: 22 isolated housings, 125 scattered 
housings, 182 dense clustered housings, and 311 very 
dense clustered housings corresponding to the most 
urban areas.

Figure 15 presents the dynamics of the wildland-urban 
interface over 10 years related to the evolution of the 
houses located at an altitude of less than 200 m of the 
Zouagha forest. In 10 years, there was a change in the 
type of housing, with the appearance of new classes of 
isolated housing (+9.89%), scattered housing (+21.03%), 
dense clustered housing (+10.44%), very dense clus-
tered housing (+3.77%), while 54.5% of the total buffer 
area around the houses remain stable. In addition, the 
habitats that disappeared in 2019 are negligible (0.5%). 

Fig. 14. WUI transition between 2009 and 2019
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This dynamic is reflected on the one hand by a densifi-
cation of the houses, but on the other,by continuing to 
expand houses areas in forest areas.

The superposition of a wildfire risk index map with the 
sites of WUI allowed us to demonstrate the fire risk 
distribution in the forest (Fig.16).

The map highlights the dominance of from  high to 
very high fire risk index class with an area of over 
1501 ha, (rate of 99.62%). The moderate fire risk index 
class has only 0.38% of the total surface area of WUI.

Certain types of WUIs represent a high level of fire 
risk; this is the case for scattered housing with high 
aggregation indices of vegetation (88.58%). Therefore, 
the mapping model allows highlighting the WUI types 
that are most sensitive and to better identify and clar-
ify priority protection areas. This map can be used for 
equipment installation, firewall trenching and trails 
establishment.
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Fig. 15. Evolution of spatial organisation of housing between 2009 and 2019

Fig. 16. Map of wildfire risk index in WUIs in the Zouagha forest
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Based on the housing types, 49.01% of the high fire 
risk index class were scattered housing, 28.92% 
were dense clustered housing, 17.41% were isolated 
housingand 4.64% were very dense clustered housing. 

Fig. 17. Wildfire risk index in WUIs

Based on the vegetation structure, 48.09% of the high 
fire risk index class had a high aggregation index, 29% 
had a low aggregation indexand 22.89% had an aggre-
gation null of vegetation (Fig.17).

 

12 
 

 1 
Fig.17 Wildfire risk index in WUIs 2 
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Conclusions 4 

 5 
Spatial data processing under the GIS, houses and vegetation made it possible to characterise the wildland-6 

urban interfaces. Their mapping on the Zouagha forest allows a new compartmentalization of this territory. The 7 
intersections between urban and vegetation types characterised 12 WUI types in the study area. The map of the 8 
WUI produced constitutes an important tool for defining a strategy for monitoring and for effective forest fire 9 
prevention in the Mila province. 10 

WUIs have increased significantly over the past decade and this trend will certainly continue in the coming 11 
years. It was housing growth that triggered WUI growth in this area. Our results allowed us to observe an 12 
increase of 5% per year in the number of buildings located in the wildland-urban interface. The increase in the 13 
number of WUIs has exacerbated the problem of wildfire in a region with a high fire frequency and a burnt area. 14 
Our results showed that the type of WUI mostly related to a fire risk was scattered housing with high vegetation 15 
aggregation. The results indicate that the regions with a very high fire risk are those characterised by a high 16 
proportion of anthropogenic spaces in contact with natural vegetation. They can be the sources of ignition at the 17 
seat of the fire caused by human imprudence. 18 

The Algerian government needs to develop a law taking into consideration the thinking of the forest cover 19 
within a radius of 100 m around buildings and housings located within 200 m of forests, scrublands or maquis to 20 
reduce the risk of house fire and to ensure the safety of the population. Furthermore, housing development on 21 
forest land is often not well planned or uncontrolled. That is why urban planning departments must take forest 22 
the fire risk into consideration in their technical studies. 23 
 24 
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Conclusions
Spatial data processing under the GIS, houses and 
vegetation made it possible to characterise the wild-
land-urban interfaces. Their mapping on the Zouagha 
forest allows a new compartmentalization of this 
territory. The intersections between urban and veg-
etation types characterised 12 WUI types in the study 
area. The map of the WUI produced constitutes an 
important tool for defining a strategy for monitor-
ing and for effective forest fire prevention in the Mila 
province.

WUIs have increased significantly over the past dec-
ade and this trend will certainly continue in the com-
ing years. It was housing growth that triggered WUI 
growth in this area. Our results allowed us to observe 
an increase of 5% per year in the number of buildings 
located in the wildland-urban interface. The increase 
in the number of WUIs has exacerbated the problem 
of wildfire in a region with a high fire frequency and a 

burnt area. Our results showed that the type of WUI 
mostly related to a fire risk was scattered housing 
with high vegetation aggregation. The results indicate 
that the regions with a very high fire risk are those 
characterised by a high proportion of anthropogenic 
spaces in contact with natural vegetation. They can be 
the sources of ignition at the seat of the fire caused by 
human imprudence.

The Algerian government needs to develop a law tak-
ing into consideration the thinking of the forest cover 
within a radius of 100 m around buildings and hous-
ings located within 200 m of forests, scrublands or 
maquis to reduce the risk of house fire and to ensure 
the safety of the population. Furthermore, housing 
development on forest land is often not well planned 
or uncontrolled. That is why urban planning depart-
ments must take forest the fire risk into consideration 
in their technical studies.
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