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Activated sludge treatment plants generate large quantities of sludge each year, thereby posing a serious environ-
mental problem. This study aims to experimentally assess the effect of rainwater on the leaching of sludge compo-
nents. In this context, a percolation test was set up, and composed of PVC cylinders into which the solid substrate was 
introduced. Five modalities of the solid substrate were used: a sludge modality, a soil modality and three modalities 
with increasing percentage of sludge (1%, 5% and 25%) in the soil. The percolation water is collected during the rainy 
months in bottles placed below each column. Solid substrate samples were taken before the test and after one year. 
The physicochemical analysis of the percolation water showed an increase in the electrical conductivity, BOD5, COD, 
nitrogen compounds and phosphate compounds which were proportional to the percentage of sludge. The pH of the 
sewage sludge leachates varies from 7.61 to 7.98. Zinc and copper were the most mobilized metals. A year following 
the installation of the percolation test, electrical conductivity, total phosphorus (TP) and orthophosphate (PO4) contents 
decreased for the solid substrates using the five modalities. Furthermore, ammonium (NH4) and nitrates (NO3) levels 
decreased in soil mixed with 1 to 25% of sludge due to their leaching by rainwater. Collectively, these data show that 
the leachates through the soil mixed with sludge are stable and loaded with NO3, a plant nutrient that can contaminate 
the groundwater as well as the surface waters inducing their eutrophication. Furthermore, addition of sludge to the 
soil improves the levels of carbon, total nitrogen, TP and PO4 in the soil and thereby soil fertility. The addition of sludge, 
however, is not without soil contamination with heavy metals. Such soil contamination would cause pollution of sur-
face and ground water. Reaching certain severity, it should call for the adoption of prompt measures for the protection 
of environment and human health. 
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Introduction
The expansion of urban regions is incessantly gener-
ating alarming amounts of sewage that require ap-
propriate treatment. The plants destined for sewage 
treatment generate a high amount of liquid and highly 
fermented waste, known as sewage sludge. In 2014, 
the sewage sludge quantity was around 392.000 tonnes 
of wet sludge in Morocco and is estimated to reach 2 
million tonnes of sludge at 25% dryness per year by the 
year 2030 (Netherlands Enterprise Agency, 2018). Such 
continuous accumulation of sludge would dramatical-
ly impact the environment (Fuentes et al., 2004; Dong 
et al., 2015). Therefore, various processes are used to 
dispose of the sludge: incineration, land filling or ag-
ricultural spreading. The sludge contains compounds 
such as carbon, nitrogen, phosphorus and potassium 
(Lambkin et al., 2004). Many researchers have reported 
a positive impact of using sewage sludge in agriculture 
(Wu et al., 2015; Kominko et al., 2017), reconditioning 
of degraded natural and anthropogenic soil (Martínez 
et al., 2003), control of erosion as well as slope stabi-
lization (Sort and Alcañiz, 1999). However, the recycling 
of sewage sludge into agricultural land has serious 
risks for public health and environment. The sewage 
sludge contains high amounts of toxic metals (Cesar et 
al., 2012). These sludge constituents are subjected to 
leaching by rainwater (Vettorazzo et al., 2001; Lehmann 
et al., 2003), and thereby liable to contaminate soil, wa-
ter, and produce (Keller et al., 2002; Lavado et al., 2007), 
which limit the use of sludge in agriculture (Chaudri et 
al., 2000; Mosquera-Losada et al., 2010).

The City of Nador, located in the northeastern region of 
Morocco, is equipped with wastewater treatment plants 
(WTP) using activated sludge process. The Nador’s 
sludge is disposed in landfill as seen in other WTPs in 
Morocco (Arisily and Hajji, 2020). Sludge, generated 
from the Nador’s WTP, can be used in farming as fer-
tilizer in the plains of Bou-Areg and Gareb, located in 
the Moulouya basin in the south of Nador city. Howev-
er, under these two plains there is a shallow aquifer, 
which extends continuously and covers an area of 570 
km2. Unlike that of the Gareb aquifer, the thickness of 
Bouareg aquifer varies from 5 to 60m only (Lyazidi et 
al., 2019), thereby increasing the risk of its pollution by 
sludge leachate.

The objective of this research is to determine the physic-
ochemical characteristics of sewage leachates in com-
parison with soil leachate, and assess its impact on the 
soil. We will use experimental models of leaching sludge 
by rainwater to assess the transfer of nutrients and toxic 
elements from sewage sludge, generated by water treat-
ment plants of Nador city (Morocco). 

Methods
In order to provide more information about the im-
portance of sludge leaching by rainwater, a percola-
tion test was carried out. The experimental test setup 
consists of a polyvinyl chloride (PVC) column (micro-
cosms), one meter high and an internal diameter of 10.5 
cm, into which the solid substrate was introduced. Five 
modalities of the solid substrate were used: a sludge 
modality (100% S) used to understand the effects of 
sludge stocks on water resources, a control modality 
consisting solely of soil (0% sludge) and three modali-
ties with increasing percentages of sludge (1%, 5% and 
25%). The soil used for the experiment, comes from 
an agricultural plot that has never received sewage 
sludge or irrigated by sewage. This soil was collected 
at a depth of 0–40 cm, dried in the open air and sieved 
to 2 mm. The sludge used in the percolation test comes 
from a sludge stock of the Nador’s WTP. The column of 
the solid substrate weighs 2.75 kg each and measures 
approximately 25 cm in height. The microcosms were 
placed in the open air for one year.

Below, a mesh of fabric holds the ground column while 
allowing a good drainage of the water. The percolation 
water was collected in bottles placed below each col-
umn in the same day. The percolates collected during 
five rainy months (January to May) were subsequently 
filtered and stored at 4°C to be analyzed the following 
day. The samples intended for the determination of 
heavy metals were acidified to pH 2 with H2SO4.

The leachate samples subjected to the percolation test 
underwent several analysis: pH, electrical conductivity 
(EC), salinity, ammonium NH4 (NF T90-015), nitrates 
NO3 (Rodier, 1984), orthophosphate (PO4) and total 
phosphorus (TP) (NF T90-023), total Kjeldahl nitrogen 
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(TKN) (NF T90-110), chlorides (NF T90-0114), sulfates 
(SO4) (Tardat-Henry and Beaudry, 1992) and chemical 
oxygen demand (COD) (NF T90-101). Biochemical ox-
ygen demand (BOD5) was determined after incubation 
at 20°C for five days. Water soluble heavy metals were 
analyzed after filtration using inductively coupled plas-
ma emission spectrometry (ICP-AES). The results were 
generated from the analysis of leachate samples (n = 
8), carried out during the five months of monitoring are 
expressed as average value. The sampling was carried 
out after rain. Table 1 shows the number of percolate 
samples taken per month. Eight samples in total were 
analyzed.

Table 1. Number of leachate samples

January February March April May

Sample numbers 1 2 1 1 3

Substrate samples were taken from the 0–10 cm layer, 
tested at the time of collection and after one year using 
the five modalities in order to check the impact of rain 
leaching on nitrogen and phosphate levels. Afterwards, 
the samples were subjected to several physicochemi-
cal analysis. The pH measurement is carried out on a 
substrate-water mixture with a ratio of 1/5 (volume /
volume). The mixture is stirred for 5 min and left to rest 
for 2 hours (ISO 10390). Electrical conductivity and sa-
linity are measured on a substrate-water extract with a 
ratio of 1/5 (mass/volume) after stirring for 30 min (ISO 
11265). The extraction of the mineral nitrogen is carried 
out with a 2M KCl solution (Keeney and Nelson, 1982). 
The forms of mineral nitrogen (NH4, NO3 and NO2) in 
extracts are analyzed by colorimetry assay according 
to the methods described for leachate. Total nitrogen 
is measured according to the Kjeldahl method (NF ISO 
11261: 1995). Orthophosphate is extracted from solid 
substrates in distilled water with a ratio 1/10 substrate/
water and stirred for 1 hour (Self-Davis et al., 2000). The 
assay is performed using the standard (NF T90-023). 
The total phosphorus is always determined using the 
NF T90-023 standard after mineralization of organic 
phosphorus into orthophosphate ions (Olsen and Som-
mer, 1982). Total organic carbon (C) is measured by the 
Walkly and Black method (Gigliotti et al., 2001). 

Heavy metals are analyzed by Inductively Coupled Plas-
ma Atomic emission spectrometry (ICP- AES) ICP (after 
mineralization with aqua regia (HNO3 and HCl with a ra-
tio of 1:3) (EPA-ROC, 1994).

Results and Discussion

Characteristics of leachate sludge

pH, electrical conductivity and salinity

Generally, leachate is considered a high strength 
wastewater with high conductivity, rich in ammonium 
and organic matter. It can be described as a multi-com-
ponent mixture of insoluble, soluble, inorganic, organic, 
non-ionic, ionic, bacteria and bacteriological substanc-
es in an aqueous solution. Since these components are 
water soluble, there is a high risk that they will leak in 
surface and groundwater (Dounavis et al., 2019).

Among the factors that affect the composition of the lea-
chate is the pH. pH is known to influence the mobility of 
heavy metals in the environment (Bourg and Loch, 1995). 
However, its effect on the concentration of heavy metals 
in soil solution differs among metals. The analysis of the 
sludge leachate collected during the monitoring period 
is shown in Table 2. We found a slight variation in pH be-
tween the five modalities studied. The pH difference be-
tween soil versus soil mixed with sludges (at 1%, 5% and 
25%) varies from 0.01 to 0.16 pH unit (Table 2). 

The electrical conductivity (EC) was also measured. The 
results show increased EC as salinity tied to the sludge 
percentage increases from 2.38 mS/cm for the soil mo-
dality to 15.17 mS/cm for the sludge modality. Conduc-
tivity values are strongly related to the total salts con-
tent in leachate reflecting its total concentration of ionic 
substances. In fact, the elevation of EC and the salinity of 
sludge percolates can be explained by the importance of 
the leaching through the sludge of mineral salts such as 
sulphates, chlorides and nitrates.

Ca, Mg, Na, K, SO4, Cl 

The biodegradation and mineralization of organic mat-
ter involves the production of nutrients through mi-
crobial communities (bacteria, fungi) and the release 
of assimilable elements (K, Ca, Mg, K, etc.). The most 
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Table 2. Physicochemical characteristics of sewage leachate

Soil Soil + 1% S Soil + 5% S Soil + 25% S 100% S 

pH 7.60 7.65 7.76 7.61 7.98

EC (mS/cm) 2.38 2.97 3.08 11.60 15.17

Sal. (g/L) 0.86 1.12 1.19 5.59 7.72

Ca (mg/L) 212.26 274.23 349.10 686.57 369.94

Mg (mg/L) 43.93 84.08 96.81 447.27 184.15

Na (mg/L) 58.75 67.75 46.50 240.90 587.50

K (mg/L) 27.37 15.69 26.60 238.30 486.66

SO4 (mg/L) 169.22 243.37 527.75 1939.43 3837.65

Cl (mg/L) 232.19 200.40 174.01 315.70 390.38

leached anions are sulphates (SO4). Sulphates are gen-
erally strongly present in leachates (Robinson and Lu-
cas, 1985). We found that their concentration in sludge 
leachates was found to be 22 times higher than in soil 
leachate. Sewage sludge contains a significant concen-
tration of sulphur. Various authors (Sommers et al., 1977; 
Gutenmann et al., 1994) report a total sulphur concentra-
tion in waste sludge between 0.3 and 2.3% on a dry solid 
basis. The most dominant inorganic sulphur containing 
molecules are sulphates and (metal-) sulphides. Moreo-
ver, some sulphur is incorporated in the organic material 
(Dewil et al., 2008). Due to their high mobility (Lehmann 
and Chroth, 2003), the sulphates would ultimately enrich 
the leachates: the fall of rain on sludges would lead to 
significant leaching of sulphates. Chlorides (Cl) are of-
ten considered as conservative and inert species (Chris-
tensen et al., 2001) and their contents do not generally 
depend on the different phases of waste degradation. 
Chloride ions are highly mobile elements. Negatively 
charged, they are not fixed by the clay-humic complex 
and migrate easily. These facts may explain our data as 
the concentration of chloride (Cl) was 1.5 times in sludge 
percolate higher than in soil percolate (Table 2). 

We found that the most leached cation is calcium. Its con-
centration increased from 212.2 mg/L for leachate soil to 
369.9 mg/L for sewage sludge percolate (Table 2).

In summary, the leached concentrations of the stud-
ied anions and cations were almost proportional to the 

percentage of sludge in the solid substrates. 

Organic matters are usually quantified as BOD5 and COD 
(Lee and Nikraz, 2014). We found that the rate of sewage 
sludge positively correlates with BOD5 and the COD (Fig. 
1). Indeed, BOD5 and COD increased from 50 mg/L to 364 
mg/L and from 454.9 mg/: to 3129.6 mg/L for soil lea-
chate and sewage sludge leachate, respectively. The in-
crease in BOD5 and COD of sludge leachate can be attrib-
uted to the increase in microbial activity and the amounts 
of leached organic matter after the rainfall. In fact, the 
activity of microorganisms is found to be stimulated by 
the addition of sludge (White et al., 1997). The increase 
of this microbial activity is likely responsible for the high 
concentration of water-soluble organic molecules, which 
could have been carried along by the percolation water. 

The BOD5/COD ratio can be considered as a measure of 
the biodegradability of the organic matter, and hence of the 
maturity of the leachate, which typically decreases with 
time (Quasim and Chiang, 1994). High BOD5/COD ratios 
indicate elevated concentrations of biodegradable organic 
compounds, while low BOD5/COD ratios indicate a resist-
ance to biological degradation due to the predominance 
of non-biodegradable compounds (Bhalla et al., 2013). A 
BOD5/COD ratio greater than 0.5 indicates an unstable lea-
chate, whereas when the ratio is less than 0.1, the leachate 
can be considered mature (SWANA, 1997). For the five 
modalities studied, the value of BOD5/COD ratio does not 
exceed 0.2 from which all the leachate collected is stable.
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Fig. 1. BOD5 and COD of leachates (mg/L)
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The nitrogen compounds (NO3, NH4, TKN)

The concentrations of NO3, TKN and NH4 in the perco-
lates of sewage sludge were determined (Fig. 2). The ni-
trate concentration (max NO3 = 640.9 mg/L) was higher 
than ammonium concentration (max NH4 = 36.2 mg/L). 
Similarly, for nitrogenous compounds, their content in 
the percolation water increased in parallel with the in-
crease in the sludge content in the solid substrates. The 
nitrate content in the percolate increased from 114.95 
mg/L for soil +1% S to 627 mg/L for soil +25% S. Leach-
ing sludges induced by rainwater enrich the percolate 
with nitrates, which could contaminate the groundwa-
ter, as well as the surface waters inducing their eu-
trophication.

The high concentrations of NO3 found in the percolates of 
the soil + sludge mixtures and in the sludge modality can 
be attributed to i) the leaching of the NO3, which already 
exists in the solid substrates of the sludge, and ii) the 
mineralization of the organic nitrogen contained in the 
sludge. This later generates NO3 via a biologic mediated 
oxidation of the released ammonium (NH4) with a tran-
sient production of NO2, as reported by Laudelout (1990). 
Due to their negative charge, nitrates are not retained by 
soil clay colloids and can be easily washed away by rain-
water and thus contaminate the natural environment, 
and, eventually, the ground waters (Atteia, 2015).

The organic content in the leachate (NTK) is also de-
termined in this study. The sludge percolates have high 
content of NTK. This content was 539 mg/L in sewage 
sludge leachate, which is 38 times higher than the con-
centration found in soil leachate (Fig. 2). This strong in-
crease can be attributed to the increase in the amount 

of leached nitrogenous organic matter. These data are 
supported by the recent study showing elevated con-
centrations of organic compounds (either susceptible to 
biological degradation or not) and ammoniacal nitrogen 
substances in the leachate (Mor et al., 2006).

Ammonium levels, however, have remained low, pre-
sumably because of its low stability and rapid conversion 
to other nitrogenous forms (NO2, NO3).

Fig. 2. Concentrations of NO3, TKN, NH4 in sewage sludge 
leachate (mg/L) 
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The phosphorous compounds (PO4, TP) 

The leached amounts of the phosphate ion (PO4) and 
total phosphorus (TP) vary from 0.1 mg/L to 5.8 mg/L 
for PO4 and from 1.2 mg/L to 16.2 mg/L for the TP (Fig. 
3). The leached concentrations of PO4 and TP from the 
sludge were respectively 5 and 9 times higher than 
those leached from the soil (Fig. 3). Indeed, phospho-
rus from sludge is likely to migrate in the soil solu-
tion by leaching or diffusion (Vanden Bossche, 1999). 

Fig. 3. Concentration of leached TP and PO4 (mg/L)
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Phosphates were the main compounds of TP present 
in the column effluents, as reported by Łuczkiewicz 
(2006). Rain water drains soluble and particulate phos-
phorus from soil or sludge. Despite the high rate of 
PO4 and TP leached, the amounts are less significant 
in comparison with the amount of nitrates. These data 
are consistent with the previous findings indicating that 
phosphorus is less easily leached than nitrates and 
ammonium (Lavelle, 2007).

Heavy metals 

The results show that the concentrations of heavy met-
als found in the leachates of the five studied modalities 
were markedly high by 2–5 folds when the soil was 
mixed with sludge at 25% (Fig. 4). Zinc and copper were 
the most mobilized metals. These data indicate that the 
sludge may pollute the ground and surface water with 
heavy metals by several folds depending on the amount 
of the sludge mixed with the soil. 

Thus, the biodegradation of sludge contributes to the 
supply of metals, resulting in greater leaching of heavy 
metals in the sludge modality. More heavy metals then 
pass into solution for this modality. Zinc is considered 
the most mobile and bioavailable among cationic heavy 
metals (Kiekens, 1995; Fjällborg et al., 2005). Cadmium 
and chromium were the least mobilized metals. In fact, 
the sludge would play a retention role for Cd and Cr. 
These metals could then be immobilized within stable 
organometallic complexes.

Characteristics of the solid substrates of the 
percolation test

At t0, prior to the run of the percolation test, it was not-
ed that the addition of the sludge to the soil with per-
centages of 1 to 25% did not affect all the pH, which re-
mained almost constant (Table 3). Indeed, the pH values 
of the modalities were close to neutrality and showed 
that these modalities favoured the assimilation of the 
nutrients. However, the electrical conductivity increased 
in parallel with the increase in the sewage rate, from 
291 μS/cm for the soil modality to 4150 mS/cm for the 
soil + 25% of sludge; similar results were according to 
the findings of other authors (Dridi and Toumi, 1999; 
Bipfubusa et al., 2006; Amadou, 2007; Bahri and An-
nabi, 2011). Total phosphorus, PO4 and NH4 levels were 
also improved following sludge addition. Spreading of 
sludge will have a fertilizing effect of the soil and, there-
fore, would increase the crop yield, promote the growth 
of herbaceous species in natural environment and ulti-
mately reduce the rate of erosion.

After one year (t1) since the percolation test installa-
tion, the five modalities showed, on the one hand, a de-
crease in electrical conductivity, which can be explained 
by the leaching of ions by rain water and decreasing in 
TP and PO4 contents due to the mineralization of the or-
ganic matter and the leaching of the latter by rainwater, 
respectively (Table 3). Furthermore, NH4, NO3 and PO4 
levels decreased in soil and in mixtures of 1 to 25% of 
sludge with soil, due to their dominant leaching. Whereas 
they increased for the sludge modality due to the miner-
alization of organic nitrogen into ammonium followed by 
the nitrification process. However, the NO3 level decrease 
from 1360.95 to 682.06 mg/kg, and from 1482.8 to 863.25 
mg/kg, and from 1354.62 to 1069.77 mg/kg, for 0%, 1%, 
5%, and 25% of the sludge-soil mixture, respectively.
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retention of heavy metals. Therefore, the leachates pH varies from to 7.6 to 7.98. The high 12 
pH (7 ≤ pH ≤ 10) at the surface and slightly neutral (6 ≤ pH ≤ 7) at depth seems to favour the 13 
retention of the heavy metals (Kouame et al., 2006) by the adsorption mechanism (Swift and 14 
McLaren, 1991; Kouame et al., 2006).  15 
Several studies have shown that heavy metals from sludge are not completely immobilized 16 
within solid soil fractions, but some of these metals can travel into the solution (Camobreco 17 
et al., 1996; Richards et al., 1998).  18 
Thus, the biodegradation of sludge contributes to the supply of metals, resulting in greater 19 
leaching of heavy metals in the sludge modality. More heavy metals then pass into solution 20 
for this modality. Zinc is considered the most mobile and bioavailable among cationic heavy 21 
metals (Kiekens, 1995; Fjällborg et al., 2005). Cadmium and chromium were the least 22 
mobilized metals. In fact, the sludge would play a retention role for Cd and Cr. These metals 23 
could then be immobilized within stable organometallic complexes. 24 
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Fig. 4 Concentration of heavy metals in leachate (µg/L) depending on the percentage of the sludge (S) 27 
in the soil 28 
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Characteristics of the solid substrates of the percolation test 30 
 31 

At t0, prior to the run of the percolation test, it was noted that the addition of the sludge 32 
to the soil with percentages of 1 to 25% did not affect all the pH, which remained almost 33 
constant (Table 3). Indeed, the pH values of the modalities were close to neutrality and 34 
showed that these modalities favoured the assimilation of the nutrients. However, the 35 
electrical conductivity increased in parallel with the increase in the sewage rate, from 291 36 
μS/cm for the soil modality to 4150 mS/cm for the soil + 25% of sludge; similar results were 37 
according to the findings of other authors (Dridi and Toumi, 1999; Bipfubusa et al., 2006; 38 
Amadou, 2007; Bahri and Annabi, 2011). Total phosphorus, PO4 and NH4 levels were also 39 
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Fig. 4. Concentration of heavy metals in leachate (µg/L) depending 
on the percentage of the sludge (S) in the soil

Because heavy metals mobility in soils is negatively cor-
related with pH (Robertson and Blowes, 1995; Geohring et 
al., 2001), the pH of the sludge-soil mix seems enforcing 
the retention of heavy metals. Therefore, the leachates pH 
varies from to 7.6 to 7.98. The high pH (7≤pH ≤ 10) at the 
surface and slightly neutral (6 ≤ pH ≤ 7) at depth seems to 
favour the retention of the heavy metals (Kouame et al., 
2006) by the adsorption mechanism (Swift and McLaren, 
1991; Kouame et al., 2006). 

Several studies have shown that heavy metals from 
sludge are not completely immobilized within solid soil 
fractions, but some of these metals can travel into the 
solution (Camobreco et al., 1996; Richards et al., 1998). 
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Table 3. Physical and chemical characteristic of solid substrates of percolation test at t0 and t1

pH EC a NO3 
b NH4 

c TP d PO4 
e

Soil
t0 7.95 291 1360.95 8.61 848.02 84.56

t1 7.82 169 682.06 5.95 376.29 82.79

Soil + 1% S
t0 7.95 334 1482.8 20.18 ** 872.18 119.29

t1 7.92 170.4 863.25 5.1 351.83 85.77

Soil + 5% S
t0 7.83 601** 938.42* 33.74* 990.56 190.56

t1 7.75 196.6 864.05 6.63 762.55* 89.69

Soil + 25% S
t0 7.25* 4150*** 1354.62 38.44** 1224.91 362.4*

t1 7.52 558* 1069.77* 17.09* 728.42* 104.49

100% S
t0 6.92** 4550** 892* 11.25 1275.65 688.56**

t1 6.97 3090*** 3266.28** 64.39** 1069.08* 332.2*

Conclusion
The leaching test carried out in this study provides an 
explanation of how the rain allows percolation of the 
most mobile chemical compounds from sewage sludge 
applied to land. The percentage of the added sludge to 
soil determines the leaching amount of nitrogen, phos-
phate, salt compounds and heavy metals, mainly zinc 
and copper. Undoubtedly, this percolation influences the 
chemical composition of shallow aquifers, especially 
when soils are characterized by high water permeability. 
Hence, together with heavy metals, nutrient compounds 
should be regarded as limiting factors for sewage sludge 
land application. Also, the effects of short-term addition 
of sludge studied in this experiment indicate that this 
addition has a beneficial fertilizing effect on the soil for 

a: μS/cm; b, c, d, e: mg/kg; *: the difference is considered significant when p < 0.05
(*, p < 0.05; **, p < 0.01, ***, p < 0.001) using unpaired Student t test to compare sample
values vs control group – soil alone

the short term in the absence of significant drain by rain 
water. Therefore, it is of great interest to expand the use 
of sludge in non-agricultural environments such as for-
est soils or degraded soils with the aim of replanting or 
increasing wood production.

However, in order to protect the quality of ground and 
surface water, this study provides evidence of deleterious 
effects of WTP-sludge on soil and water quality, as well 
as a strong rational for the necessity of a careful moni-
toring, management and storage of sludge produced by 
sewage treatment plants. Regulatory measures for set-
ting the conditions and technical requirements have to 
be implemented to ensure the protection of environment 
and population’s health.
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