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Biosorption is the most favourable technique for the treatment of heavy metals as it is fast, powerful, and low cost, 
it takes place in a wide range of temperatures as well as it can be used for almost all types of heavy metals. In this 
study, the biosorption technique adsorbs Cu2+ and Zn2+ on the dried macroalgae (Halimeda opuntia and Turbinaria 
turbinata) in a batch system. Experimental parameters affecting the biosorption process are initial metal ion con-
centrations (5, 10, 15 and 25 mg/L), pH between (4.5 and 5.2), biomass dosage (1 gm) and agitation speed 150 rpm 
applied at contact time (30, 60 and 120 min). The significant-high average removals of Cu2+ by H.opuntia (> 96%) 
were recorded in concentrations of 10, 15 and 25 ppm at 120 min and the highest average removals by T.turbinata 
(81.07%, 78.32% and 74.7%) were recorded in concentrations of 5, 10 and 15 ppm at 120 min. The lowest average 
removal of Cu2+ 89.22% was recorded by H.opuntia and 49.9% was recorded by T.turbinata in a concentration of 
25 ppm at 30 min. In the same way, significant-high average removals (>94%) were recorded in a concentration of 
10 ppm at 120 min for H.opuntia and in a concentration of 5 ppm by at 60 min for T.turbinata. In conclusion, the dead 
biomass of marine algae can provide a promising and low-cost technique for removing heavy metal pollutants in 
medical industries.
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Introduction
Recently, metal pollution has become a major issue all 
over the world, where metal ions in potable water and 
wastewater exceed, in many cases, the permissible san-
itary levels. Many industrial activities contain dissolved 
heavy metals in their aqueous effluents; if these discharg-
es are emitted without treatment, they may have adverse 
effects on the environment (Lu et al., 2017; Mir-Tutusaus 
et al., 2018). Trace amounts of heavy metals are required 
by living organisms, but when they exceed the permissi-
ble levels, they cause various diseases and disorders as 
well as deleterious ecological effects, as they are toxic 
and non-degradable (Mustapha & Halimoon, 2015).

Despite the importance of zinc and copper, as important 
minerals for living organisms, zinc at a concentration 
of more than 2 mg/L in wastewater causes irritation, 
stomach cramps, and lung disorders. Long-term ex-
posure to high doses of copper may cause copper tox-
icity, which is distinguished by nausea, fever, passing 
out, vomiting, abdominal cramps, diarrhoea and over 
time causes liver damage, kidney diseases, brain dam-
age and heart failure (Jewell, 2019). Dissolved metals 
cannot be removed from the natural environment, so 
conventional methods for their removal have been 
studying extensively. These methods include chemical 
precipitation, ion exchange/chelation, adsorption on 
activated carbon, and membrane processes (Sharma, 
2015; Morin-Crini & Crini, 2017). However, application 
of these methods is often restricted because they are 
ineffective and costly. Consequently, biosorption has 
emerged as an alternative, inexpensive and effective 
technology (Nadeem et al., 2016).

Biosorption, the passive uptakes process to bind heavy 
metals on the cellular structure of biological mass, has 
emerged as an attractive technology due to its simplic-
ity, high efficiency, flexibility of operation, and low cost 
(Espinosa et al., 2016). Other features of the biosorp-
tion technique are easy regeneration of the biosorbent 
and recuperation of the sorbate. The biosorption pro-
cess involves absorption of heavy metals in solution 
on the surface of a cell wall through interaction with 
functional groups (i.e., carboxylate, amine, amide, imi-
dazole, phosphate, hydroxyl, and other groups) found in 
cell walls of biopolymers. Many parameters affect the 

biosorption process efficiency such as biosorbent char-
acteristics (i.e., permeability, surface territory), metal 
ion features (i.e., molecular weight, oxidation state, ionic 
radius), in addition to other parameters such as pH, tem-
perature, contact time, biosorbent and sorbate concen-
tration etc. (Escudero et al., 2019).

For years, bacteria, yeast, fungi and algae have been 
widely used as biosorbents for metal ions (Rahman et 
al., 2019). Among the biological materials, algae are the 
most efficient and modest biosorbents because of their 
slight nutrient requirement. In view of the statistical 
analysis on algae efficiency in the biosorption process, 
it has been accounted that algae retain 15.3%–84.6% 
percentage higher than other microbial biosorbents 
(Mustapha & Halimoon, 2015). The mechanism of 
the macroalgae biomass absorption process can be 
explained simply that macroalgae contain chemical 
groups attached to the cell wall polysaccharides and 
proteins such as amino, carboxyl and hydroxyl groups 
that react with metal ions through many reactions, i.e., 
complexation, coordination, microprecipitation and ion 
exchange (Ali Redha, 2020).

The aim of the current study was to evaluate the biosorp-
tion potential of dried macroalgal biomass for removing 
and recovering heavy metals ions (Cu and Zn) from a 
synthetic aqueous solution and to specify the effects of 
various factors, i.e., initial metal ion concentration and 
contact time at pH (4.5 to 5.2) and biosorbent dose (1 gm) 
for the Cu and Zn ion removal.

Material and Method

Preparation of biosorbents

One kilogram of H.opuntia and T.turbinata was collected 
from Red Sea coast in front of NIOF region, the collect-
ed samples then were washed with tap water followed 
by distilled water to remove any agglutinated materi-
als as the epiphytes, sand or mud particles. The algae 
were shade dried, and then oven dried at 60°C for 48 h 
to remove excess water and moisture. The dried algae 
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biomass was cut and ground in a mechanical grinder to 
be a ground fine powder, subsequently sieved and the 
particles with an average size of 0.5 mm were used as 
a biosorbent (Christobel & Lipton, 2015).

Preparation of standard solutions

Cu (No3)2. 3H2O and Zn (NO3)2. 6H2O were used as the 
source of metal in solutions. Copper and zinc solutions 
were prepared in concentration levels at 5, 10, 15 and 
25 ppm by diluting the stock solution (1000 ppm) with 
distilled water.

Experimental procedure

The experiment on the effects of varying initial metal 
ion concentrations (5, 10, 15 and 25 ppm) and contact 
time (30, 60 and 120 min) at pH between 4.5 to 5.2 and 
adsorbent dose 1gm was carried out by adding 1 g dry 
weight of H.opuntia and T.turbinata to a series of flasks 
containing 100 mL of solution of varying initial metal 
concentrations. The flasks were shaken at 150 rpm for 
30, 60 and 120 min in the dark in a temperature-con-
trolled shaking incubator (at 20°C) to allow the metal 
uptakes process (Hashim et al., 2004). After that, the 
samples were filtered through a GF/C filter and the fil-
trates were analyzed for residual metal concentration 
by flame atomic absorption spectrophotometer (AAS, 
GBC-932). We made triplicate samples to assess the 
accuracy and the mean values that were used for the 
concentration calculations. The results were expressed 
in terms of percentage removal of Cu and Zn ions, as 
given below by the equation:
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Where Co is the initial metal ion concentration in ppm, Ce 
is the concentration levels of Cu and Zn ions after adsorp-
tion (ppm). (Mamatha et al., 2012).
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Statistical analysis was carried out by using Minitab 
(version 19) to indicate a significance of treatment. One-
way analyses of variance (ANOVA) followed by Fisher’s 
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concentrations and contact times.
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Plate 1. SEM spectrum of H.opuntia before (1A) and after adsorption 
of Cu (1B) and Zn (1C) at 150 KV x100 and 150KV x2000
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Plate 2. SEM spectrum of T.turbinata before (2A) and after adsorption of Cu (2B) and Zn (2C) at 150 KV 126 
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When low metal concentration is used, most of the binding sites of the biosorbent may not be occupied, so the true 133 
maximum biosorption capacity of the biosorbent would not unveil. With increasing metal concentration to the 134 
extent that the binding sites of biosorbent become fully saturated with the metal, the increase in metal concentration 135 
will not be effective. Initial ion concentration plays an important role in the biosorption process. H.opuntia was 136 
recording Cu2+ removal efficiency between 89.22% in 25 ppm concentration and 96.80% in 15 ppm concentration, 137 
while T.turbinata was recording removal efficiency between 49.90% in 25 ppm concentration and 81.07% in 5 138 
ppm concentration, respectively. A slight decrease in the biosorption efficiency was observed to occur as the 139 
concentration of Cu2+ ions increased from 10 to 25 ppm with T.turbinata; meanwhile, the biosorption efficiency 140 
values were close to each other at 10 and 15 ppm and slightly decreased at 25 ppm with H.opuntia (Fig. 1). The 141 
estimated results indicated that H.opuntia was more efficient than T.turbinata in the removal of Cu. 142 
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ion concentration. Contrary to the case of Cu2+, there was a prominent decrease in biosorption efficiency when the 144 
concentration of Zn ions was increased from 10 to 25 ppm. On the other hand, the maximum removal efficiency 145 
of T.turbinata (94.44%) was observed in 5 ppm concentration. It was noticed that the removal efficiencies of Zn2+ 146 
with H.opuntia and T.turbinata were almost equal (Table 2). It is clear that increasing Zn2+ concentrations from 5 147 
to 25 ppm showed a significant decrease in the removal efficiency. These illustrations indicated that the dry marine 148 
algae of both species had the highest efficient removal property in the low Zn2+ concentration solutions and were 149 
more effective in Cu2+ solutions with all concentrations. This illustration is in complete agreement with Ibrahim 150 
et al.’s (2016) study, where they report that the adsorption process is more effective at low concentrations because 151 
all active sites on the algal surface are vacant. Inversely, at the higher metal levels in aqueous solutions, the binding 152 
sites of the algal surfaces become consumed and finally the biosorbent surfaces become saturated and uptakes 153 
rates decrease (Al-Qodah, 2006; Tsai & Chen, 2010; Yang et al., 2010). 154 
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Plate 2. SEM spectrum of T.turbinata before (2A) and after adsorp-
tion of Cu (2B) and Zn (2C) at 150 KV x100 and 150KV x500
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Fig. 2. The effect of contact time on Cu+2 and Zn+2 removal efficiency by H.opuntia and T.turbinata
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In case of Zn2+, H.opuntia was recorded to show the 
optimum adsorption efficiency (94.98%) in 10 ppm ion 
concentration. Contrary to the case of Cu2+, there was a 
prominent decrease in biosorption efficiency when the 
concentration of Zn ions was increased from 10 to 25 
ppm. On the other hand, the maximum removal effi-
ciency of T.turbinata (94.44%) was observed in 5 ppm 
concentration. It was noticed that the removal efficien-
cies of Zn2+ with H.opuntia and T.turbinata were almost 
equal (Table 2). It is clear that increasing Zn2+ concen-
trations from 5 to 25 ppm showed a significant decrease 
in the removal efficiency. These illustrations indicated that 
the dry marine algae of both species had the highest effi-
cient removal property in the low Zn2+ concentration solu-
tions and were more effective in Cu2+ solutions with all 
concentrations. This illustration is in complete agreement 
with Ibrahim et al.’s (2016) study, where they report that 
the adsorption process is more effective at low concen-
trations because all active sites on the algal surface are 
vacant. Inversely, at the higher metal levels in aqueous 
solutions, the binding sites of the algal surfaces become 
consumed and finally the biosorbent surfaces become 
saturated and uptakes rates decrease (Al-Qodah, 2006; 
Tsai & Chen, 2010; Yang et al., 2010).

Effect of contact time

Contact time refers to the required time for the bi-
osorption process to carry out. The contact time was 
one of the vital factors affecting the biosorption process 

efficiency. To specify experimental conditions, increas-
ing contact time would allow the biosorbent material to 
detect the maximum biosorption amplitude. As the bio-
sorbent reaches its maximum biosorption capacity, the 
binding sites become fully saturated and an increase in 
the contact time becomes worthless. Fig. 2 summarizes 
the biosorption efficiency of Cu and Zn ions by H.opuntia 
and T.turbinata as a function of contact time at different 
concentration levels. The adsorption behaviour shows 
variation among the studied metal ions. The rate of Cu 
ion removal was fast, as 89.2% to 94.30% and 49.9% 
to 73.00% of the metal was removed at 30 min within 
H.opuntia and T.turbinata, respectively. During the initial 
stage, a larger surface area of algae is available; there-
fore, the adsorption quickly occurs at the active biding 
sites (El-Moselhy et al., 2017). It was noticed that within 
60 min contact time, removal efficiency decreased when 
T.turbinata was used and raised again at 120 min. In 
case of zinc, within 30 min, 85.8% to 92.59% and 88.05% 
to 90.96% were removed by H.opuntia and T.turbinata, 
respectively. Within H.opuntia concentrations of 15 and 
25 ppm, the removal efficiency increased gradually with 
time until 120 min. Within T.turbinata, concentration of 
5, 10, 15, and 25 ppm, the removal efficiency increased 
within an increase of time from 30 to 60 min, then a 
slight decrease occured with 5 and 15 mg/L at 120 min. 
Percentages of Zn2+ and copper removal at the definite 
conditions of different types of macroalgae used in pre-
vious studies are listed in Table 1.
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Table 1. Comparison between the obtained biosorption capacity of Cu2+ and Zn2+ within Halimeda opuntia and Turbinaria turbinata and some 
pervious studied macroalgal species

Seaweed Type Treatment conditions Heavy Metals Adsorption capacity References

Halimeda 
opuntia

Green 
seaweed

Cu2+

t =120 min
T = 20°C
Biomass = 1 g
pH = 4.5–5.2
rpm = 150
Ions concentration = 10, 15 and 25 mg/L

Zn2+

t =120 min
T = 20°C
Biomass = 1 g
pH = 4.5–5.2
rpm = 150
Ions concentration = 10 mg/L

Cu2+ and Zn2+ Cu2+ > 96%
Zn2+ > 94%

Present study

Turbinaria 
turbinata

Brown 
seaweed

Cu2+

t = 120m
T = 20°C
Biomass = 1 g
pH = 4.5–5.2
rpm = 150
Ions concentration =5 and 10 mg/L

Zn2+

t = 60 min
T = 20°C
Biomass = 1 g
pH = 4.5–5.2
rpm = 150
Ions concentration = 5 mg/L

Cu2+ and Zn2+
Cu2+ (74.7–81.07%)
Zn2+ > 94%

Present study

Sargassum 
sp.

Brown 
seaweed

t = 60 min
T = 25°C
Biomass = 1 g
pH = 3
rpm = 200
Ions concentration = 5 mg/L

Zn2+ Zn2+ = 90.3% (acid 
treated)

(Mahmood et 
al., 2017)

Sargassum 
sp.

Brown 
seaweed

t = 6 h
T = 30°C
Biomass = 0.1 g
pH = 5
rpm = 150
Ion concentration 0–7 mmol/L

Cu2+ Cu2+ = 1.483 mmol/g
(Barquilha et 
al., 2017)

Sargassum 
filipendula

Brown 
seaweed

t = 24 h 
T = 25°C
Biomass = 2 g/L
pH = 3.5
rpm = 180
Ion concentration = 1 mmol/L

Cu2+ and Zn2+ Cu2+ = 69.05%
Zn2+ = 44.21%

(Cardoso et al., 
2017)



Environmental Research, Engineering and Management 2021/77/182

Seaweed Type Treatment conditions Heavy Metals Adsorption capacity References

Osmundea 
pinnatifida

Red 
seaweed

t = 180 and 60 min 
T = 20 to 23°C
Biomass = 20 g/L
pH = 5
rpm = 500
Ion concentration=100 and 50 mg/L

Cu2+

Cu2+ = 50.89% to 
71.64%

(El Hassouni et 
al., 2014)

Fucus 
vesiculou

Brown 
algae

t = 2h 
T = 25°C
Biomass = 0.25 g/L
pH = 5
Ion concentration=10–150 mg/L

0.97 mg/g
(Brinza et al., 
2007)

Gracilaria 
fisheri

Red 
algae

t = 30m
T = 22°C
Biomass = 2 g/L
pH 4
rpm = 100
Ion concentration = 1 mM

Cu2+

90% (treated with 
NaoH)
80% (native)

(Chaisuksant, 
2003)

Ulva sp
Green 
algae

t = 2 h
T = 22°C
Biomass = 8 g/L
pH = 5.5
Ion concentration = 10 to 220mg/L

Zn2+ 29.63 mg/g
(Badescu et al., 
2017)

Ulva 
fasciata and 
Sargassum 
sp.

Green 
algae

Brown 
algae

t = 30 m
T =22°C
Biomass = 0.1 to 5 g/L
pH 5.5
rpm = 150
Ion concentration = 10 to 220 mg/L

Cu2+

73.5 mg/g for 
U. fasciata and 
72.5 mg/g for 
Sargassum sp

(Karthikeyan et 
al., 2007)

Data analysis

The ANOVA result indicates highly significant differ-
ences between two tested seaweeds in the removal of 
copper and zinc at different concentrations (P = 0.001, 
Tables 2, 3). In addition, Fisher’s grouping test indicates 

Table 2. ANOVA and Fisher’s grouping test of removal (%) of Cu at different concentration (ppm) and time (min)

ANOVA Time (min) Fisher’s test for different concentrations (ppm) grouping

F P 5 10 15 25

H.opuntia

373.1 0.001 30 93.34 ± 0.25B 94.30 ± 0.13A 93.40 ± 1.49B 89.22 ± 0.22C

140.3 0.001 60 92.14 ± 0.247B 95.26 ± 0.24A 95.55 ± 0.322A 92.21 ± 0.29B

312.9 0.001 120 92.8 ± 0.16C 96.19 ± 0.09B 96.8 ± 0.21A 96.27 ± 0.21B

T.turbinata

437.2 0.001 30 73 ± 0.06A 71.2 ± 0.1B 61.22 ± 011C 49.9 ± 0.06D

191.9 0.001 60 60.22 ± 0.07B 64.52 ± 0.08A 56.59 ± 0.04C 52.6 ± 0.05D

521.3 0.001 120 81.07 ± 0.02A 78.32 ± 0.05B 74.7 ± 0.02C 70.4 ± 0.01D

a significant difference between copper and zinc at dif-
ferent concentrations and times. The highest removal 
of copper was 96.8%, 96.27%, and 96.19% at concentra-
tions of 15, 25, and 10 ppm, respectively, by H.opuntia at 
120 min, while the lowest removal of copper was 49.9% 

Table 1 (continued)
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at concentrations 25 ppm by Turbinaria turbinata at 30 
min. As for zinc, the highest removal was 94.9% at con-
centrations of 10 ppm by H.opuntia at 120 min, followed 
by 94.4% at a concentration of 5 ppm by T.turbinata at 
60 min, while the lowest removal was 85.8% at a con-
centration 25 ppm by H. opuntia at 30 min.

Conclusion
Based on the obtained results, it can be concluded that 
the studied species (H.opuntia and T.turbinata) have 

high abilities for copper and zinc removal at low con-
centrations. Both species are able to remove signif-
icant amounts of copper and zinc, hence supporting 
their potential application in the treatment of waste-
water polluted by the metals. H.opuntia has higher 
efficiency for copper removal in comparison to T.tur-
binata, where more than 96% of copper is removed at 
120 min within H.opuntia, while T.turbinata removes 
81% of Cu ions at 120 min. In case of zinc, the two-
used macroalgae have close competencies; they re-
move more than 85% within 30 min.
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