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In this paper, mathematical modelling is performed for a group of fins in a heat sink in order to determine the optimum 
dimensionless thickness of the fins using 8 different types of cooling nanofluids including nanoparticles of aluminium, 
alumina, titanium, titanium dioxide, copper, copper oxide, iron and iron oxide (hematite) with water as the base fluid in a 
thermoelectric solar still. The heat sink is used to enhance thermoelectric cooling and heating to water. The flow crossing 
fins is considered laminar and fully developed. Copper with high thermal conductivity is considered as the material of flat 
plate fins. Different nanofluids with volume fractions of 1%, 3%, 5%, 7% and 9% with a nanoparticle diameter of 25, 50 
and 75 nm are analyzed for fins with rectangular cross sections. Besides, the economic and environmental analysis is 
conducted on the thermoelectric solar still. It is also observed that the range of 3.65% to 3.95% is obtained for the opti-
mum volume fraction in the used nanofluids. The carbon dioxide mitigation based on the environmental parameter and 
exergoenvironmental parameters in the solar still is about 23.78 tons of CO2 and 1.04 tons of CO2, respectively.
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Introduction
In recent years, many studies have been done about 
cooling of fluid and some of them concerning heat 
transfer using fins in heat sinks. Conventional methods 
for increasing heat transfer consist of increasing the 
heat transfer area of fins (Shoeibi et al., 2020), adding 
the number of fins or changing their geometrical shape, 
and a combination of these methods. Many designs 
have been conducted to use various nanoparticles to 
improve the performance of a solar still (Sahota et al., 
2017a; Faizal et al., 2013; Singh, 2008b). The main goal 
for researchers in this field is to keep the temperature 
of electronic parts in the allowable range, since in case 
of increasing their temperature more than the allowa-
ble range, these parts fail to operate properly and the 
percentage of errors increases. Therefore, cooling of 
electronic parts is very essential and important.

Manay and Shahin (2017) experimentally determined the 
volume fraction upper limitations of the TiO2–water na-
nofluid for heat transfer performance in microchannels. 
They showed that addition of nanoparticles with an av-
erage diameter smaller than 25 nm into the base fluid 
leads to reduction in the thermal resistance. They also 
indicated that TiO2–water nanofluid increased heat trans-
fer with a volume fraction up to 2.0%, but heat transfer 
decreased after that. Xia et al. (2016) investigated convec-
tion heat transfer of alumina and titanium dioxide nano-
fluid in heat sinks. They showed that nanoparticle motion 
due to convection results in stopping the laminar flow 
and increasing heat transfer. One of the most important 
effects of nanofluids is the significant improvement of 
thermal conductivity (Chen et al., 2017).

The increasing thermal conductivity can be observed even 
in low concentrations of nanofluids. Various observations 
(Li and Eastman, 1999; Masuda et al., 1993) proved that 
having low volumes of nanoparticles (1 to 5 volumetric 
percent) increased the thermal conductivity of a suspen-
sion up to 20%. This increase depends on factors like 
size of particles, volume in the suspension and thermal 
properties of particles. Nanofluids have many advantag-
es with respect to usual fluids which make them suitable 
for heat exchangers (Sahota et al., 2017a). Naphon and 
Nakharintr (2013) studied heat transfer performance of 
TiO2–water nanofluid flowing through a small heat sink 

with rectangular fins and concluded that the optimized 
fin geometry reached maximum performance. Zhang et 
al. (2013) studied heat transfer of Al2O3-water nanoflu-
id with volume fractions of 0.25%, 0.51% and 0.77% in a 
circular microchannel experimentally. They proved that 
the Nusselt number of Al2O3-water nanofluid was higher 
than pure water, and with enhancement in the Reynolds 
number and volume fraction of nanoparticles, the Nus-
selt number increased, too. The highest increment of the 
Nusselt number is 10.6% and is related to a nanofluid 
with the concentration of 0.77%.

Using nanoparticles suspended in water with volume 
fraction concentrations of 0%, 5%, 16% and 31%, Escher 
et al. proved that increasing concentration had a mean-
ingful effect on the Nusselt number and improved heat 
transfer in a microchannel (Escher et al., 2011). 

Nanofluid is referred to a solution of metallic or non-me-
tallic nanoparticles suspended in a base fluid. For exam-
ple, blood is a complex bio nanofluid. The super fine par-
ticles in a nanofluid change heat transfer properties and 
result in improvement of heat transfer (Singh, 2008a). 
Researchers Li and Chao (2009) and Li et al. (2013) have 
studied heat transfer of flat plate heat sinks, focusing on 
enhancement of flat plate and circular fin geometry. The 
results showed that, by increasing flow turbulence, the 
heat transfer function of flat plate fins improved. Jung 
et al. (2009) investigated convection heat transfer of 
Al2O3-water nanofluid in a rectangular microchannel in a 
laminar flow condition. They observed that the heat trans-
fer coefficient for a volume fraction of 1.8% increased by 
more than 32% with respect to the base fluid. Wen and 
Ding (2004) investigated the laminar flow of Al2O3-water 
nanofluid in a copper pipe, experimentally. They showed 
that adding aluminium oxide nanoparticles to water up 
to 1.6% resulted in an increase of the Nusselt number 
up to 38%. Many studies have been done regarding the 
increase of heat transfer in a parallel flow for enhance-
ment of flat plate and circular fin geometry.

In this research, optimizing the thickness of flat plate fins 
used in a heat sink of a solar still in order to maximize 
heat transfer for different nanofluids with different vol-
ume fractions and nanoparticle diameters was studied. 
The main aim of this study is to find the effect of different 
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nanofluids in designing the optimum geometry of fins 
and to determine fin thickness to obtain more heat trans-
fer. To achieve this goal, using mathematical modelling, 
the energy equation for a flat plate fin with an insulated 
end is solved to obtain the heat transfer rate, and then by 
maximizing it, the optimum fin thickness is calculated. 
Finally, the economic and environmental analysis of a 
thermoelectric solar still was conducted.

Material and methods
In this study, both thermoelectric hot and cold sides are 
connected to two cooling and heating tanks, which are 
used to decrease the glass temperature from the cold 
side and raise the water temperature from the hot side 
of the solar still, shown in Fig 1. The solar still was test-
ed in the climatic condition of Tehran, Iran (35°41´N 
,51°19´E). Two Plexiglas tanks are used with dimensions 
of 200 mm × 100 mm with one side made of aluminium 
sheets with 2 mm thickness. The thermoelectric mod-
ules are installed between these two aluminium sheets. 
On the inside of the tanks, heat sinks were used to raise 
the heat transfer. The heat sink with a total length of 150 
mm and 20 numbers of rectangular fins with variable 
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Fig. 1. Photo of the solar still with hot and cold tanks connected to 
the heat sink

Fig. 2. Schematic model of the heat sink

spacing depending on optimal thickness (length is con-
stant) of copper was considered (copper was chosen for 
fins material to have a better heat conduction coefficient). 
Table 1 specifies the dimensional parameters of the heat 
sink. The distance between the hot and cold water tanks 
is covered with insulation to prevent the connection of 
the hot plate to the cold plate. Fig. 2 shows the drawing 
of a thermoelectric hot and cold side connected to the 
heat sink used in the solar still.

Parameter Amount Dimension Unit

L 80 Height mm

W 50 Width mm

B 150 Length mm

N 20 Number of fins No.

Table 1. Dimensional parameters of the heat sink

The fins’ width is considered fixed and assuming the con-
stant volume for the fins; the optimized dimensionless 
thickness of the fins can be calculated. As it can be seen 
in Fig. 2, the fluid flows from around towards the heat 
sink by forced convection.

One dimensional assumption 

The heat sink is considered adiabatic at both ends, and 
for one dimensional assumption, heat transfer from 
thin lateral surfaces is neglected and these surfaces are 
considered insulated. In addition, the base temperature 
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distribution of the fins along the sink width (W) is con-
sidered uniform. Another required assumption for one 
dimensional heat transfer is to consider half of the sink 
due to symmetry, assuming the fins’ top surfaces to be 
insulated. Besides, we assume that the flow is laminar 
and fully developing.

Variables of the study

Eight different cooling nanofluids consisting of aluminium, 
alumina, titanium, titanium dioxide, copper, copper oxide, 
iron and iron oxide nanoparticles with water as the base 
fluid were used in this study. The nanofluids were selected 
so that performance of a nanofluid with metallic nanopar-
ticles and its oxide nanoparticles could be compared. The 
nanoparticle diameters of the selected nanofluids were 
25, 50 and 75 nm and volume fractions of 1%, 3%, 5%, 7% 
and 9% were considered and their respective effect on the 
heat sink fin’s optimum thickness was investigated. The 
average fluid temperatures were considered as 310, 320, 
330 and 340 K, the input flow velocity was considered as 
5 m/s (for laminar flow) and their effects on the fin’s di-
mensionless optimum thickness were also investigated.

Theoretical background

Fin base temperature Tw is required to calculate con-
vection heat transfer from fin’s lateral surfaces, using 
the Newton law of cooling. On the other hand, the fin’s 
surface distribution temperature can be calculated from 
a general differential equation using conservation of the 
energy law for fins with one dimensional assumption. 
After solving the equations and applying the adiabatic 
boundary conditions for the fin’s tip, the heat transfer rate 
from the fin’s wall with the temperature of Tw to the fin 
can be obtained by (Bejan, 2013):
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The total efficiency of the heat sink (group of fins) is 
achieved by the following relation:

 η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 �1 − η� (3)

where: At = NAc + Ab–; Ac = wt; P = 2w 

Optimum dimensionless fin thickness
Assuming laminar and developed flow over the flat 
plate, the average convection heat transfer coefficient 
in the direction of fin’s thickness is obtained by equation 
(4) (Bejan, 2013): 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(4)

The heat transfer rate per unit length of the fins can 
be rewritten as follows:

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(5)

The coefficient of 2 in equation (5) is for heat transfer from 
both sides of the fin. For laminar flow between two sur-
faces with constant temperature in any section, the Nus-
selt number is constant and equal to 7.54 (Bejan, 2013). 
Considering that Dh = 2D , equation (5) can be rewritten as 
follows:

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(6)

Substituting the value of m in equation (6):

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(7)

The total number of fins in a heat sink with the length of 
B is 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

. Therefore, the overall heat transfer can be 
obtained as follows:   

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(8)

For simplifying, after normalizing the overall heat 

transfer equation, the relation of 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

 is 
used. Therefore: 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(9)

Substituting the efficiency of one fin by 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

   
relation, equation (9) can be written in the following 
form: 



Environmental Research, Engineering and Management 2021/77/2114

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(10)

Simplifying the equation (10) gives the following re-
lation: 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

(11)

Where: 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

;

In addition, considering 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

, 

4 
 

The total efficiency of the heat sink (group of fins) is achieved by the following relation:  1 
 2 
 3 

                      (3) 4 
 5 

 6 
where: 𝐴𝐴� = 𝑁𝑁𝐴𝐴� + 𝐴𝐴�–; 7 
 𝐴𝐴� = 𝑤𝑤𝑤𝑤; 8 

𝑃𝑃 = 2𝑤𝑤 . 9 
Optimum dimensionless fin thickness  10 

 11 
Assuming laminar and developed flow over the flat plate, the average convection heat transfer coefficient in 12 

the direction of fin’s thickness is obtained by equation (4) (Bejan, 2013):  13 
 14 

h = Nu( ����)                                                                                                                                                         (4) 15 
 16 
The heat transfer rate per unit length of the fins can be rewritten as follows:  17 
 18 
q��� = 2hL(T� − T�)η                                                                                                                                        (5) 19 
 20 

The coefficient of 2 in equation (5) is for heat transfer from both sides of the fin. For laminar flow between 21 
two surfaces with constant temperature in any section, the Nusselt number is constant and equal to 7.54 (Bejan, 22 
2013). Considering that  𝐷𝐷� = 2𝐷𝐷 , equation (5) can be rewritten as follows:  23 

 24 
h = Nu(�����)                                                                                                                                                         (6) 25 

 26 
Substituting the value of m in equation (6):  27 
 28 
h = (Nu ���

��
)�/� �

(��)�/�                                                                                                                                          (7) 29 
 30 

The total number of fins in a heat sink with the length of B is  𝑁𝑁 = �
���  . Therefore, the overall heat transfer 31 

can be obtained as follows:    32 
 33 

q����� = � �
����Nuk�� �� (T� − T�)η                                                                                                                                                     (8) 34 

 35 
For simplifying, after normalizing the overall heat transfer equation, the relation of Q = ������

 ��(�����)�/�  is used. 36 
Therefore:  37 
 38 

Q = Nu ���
��

((��)�/�

(���
�))η                                                                                                                                                    (9) 39 

 40 
Substituting the efficiency of one fin by  η = ���� ��

��   relation, equation (9) can be written in the following form:  41 
 42 

Q = �
� (Nu ���

��
)�/� �

�
��

�/�

���
�

 tanh [�� (�Nu ���
��
�
�
� ����

�
�]                                                                                                                           (10) 43 

Simplifying the equation (10) gives the following relation:  44 
 45 
Q = b ��/�

��� tanh ( �
��/�))                                                                                                                                            (11) 46 

Where: b = �
� (Nu ���

��
)�/�; 47 

 48 
 In addition, considering  �����

≪ 1  ,  �� > 1 , the parameter of b varies between 0.1 to 10 (assuming logical 49 
values of L/D, for example, less than 100). In equation (11), the parameter of x is the dimensionless thickness of 50 
the fin and is equal to  𝑥𝑥 = �

�  . The dimensionless thickness of the fin can be optimized assuming other parameters 51 
(like b) to be constant. As the range of b is specified, for some values of b in its limitation, the respective amounts 52 

η���� ���� = q�����
hA�θ� = 1 − NA�

A�
 (1 − η) 

, the parameter 
of b varies between 0.1 to 10 (assuming logical values 
of L/D, for example, less than 100). In equation (11), 
the parameter of x is the dimensionless thickness 
of the fin and is equal to 𝑥𝑥 = �

� . The dimensionless 
thickness of the fin can be optimized assuming other 
parameters (like b) to be constant. As the range of 
b is specified, for some values of b in its limitation, 
the respective amounts of xopt and Qmax are calculated 
and presented in Table 2. Knowing that the parameter 
of x is always less than 1, the higher values are not 
presented. 

Table 2. The amounts of heat transfer with variable b

b xopt
Qmax η (%)

0.1 0.054 0.0089 0.945

0.2 0.113 0.0322 0.896

0.5 0.27 0.152 0.7750

1 0.498 0.419 0.627

2 0.809 0.971 0.439

4 0.989 1.999 0.248

10 0.999 5 0.1

Table 2 shows that the maximum heat transfers for 
b ≥ 2 is obtained when the optimized fin thickness is 
about 0.8D to D which is not correct due to narrowing 
the flow passage. Assuming the value of t/D < 0.5 for 
a logical flow passage, then the value of b shall be b ≤ 
1. For this limitation of b, the amount of 
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Environmental analysis

The electrical energy produced by fossil fuels on a 
power generation plant, which was harmful to the en-
vironment, was used to produce all the parts used in 
the body, electrical equipment, and nanoparticles in 
the solar still. A large amount of environmental pol-
lutants in the production of these parts are spread to 
the environment (Rajaseenivasan and Srithar, 2016). 
The enviroeconomic analysis is specified based on 
two parameters of carbon dioxide emission and car-
bon dioxide mitigation.

Carbon dioxide emission

The CO2 emission per kilowatt-hour is about 0.96 kg 
(Sovacool, 2008). Meanwhile, the CO2 production per 
kilowatt-hour is usually about 2 kg, considering the 
transmission loss (20%) and distribution loss (40%), 
which are generally caused by unsuitable equipment. 
The annual carbon dioxide emission and carbon diox-
ide emission over the life of the solar still are deter-
mined as follows (Dwivedi and Tiwari, 2010):

Annual carbon dioxide emission = 
 

Annual carbon dioxide emission =  �×���
�                                                                                                       (20) 

Carbon dioxide emission during life time =  2 × E��                                                                                   (21) 
 

Carbon dioxide mitigation 
 
The annual Co� mitigation rate in the solar still (kg/year CO�) is equal to (E��)��� × 2. Therefore, the carbon 

dioxide mitigation during the life of the solar still is (E��)��� × 2 × n. The net amount of  CO� mitigation per ton is 
equal to the CO� mitigation minus the CO� emission during the life of the solar still, which is determined from the 
following equation (Joshi and Tiwari, 2018): 
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Calculation of nanofluid thermal conductivity 

The equations of heat sink with the nanofluid are the 
same as the equations with the base fluid, and the 
density, thermal conductivity, and heat capacity of na-
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Where: φv = volume fraction; ρp= density of nanoparti-
cles; ρbf = water density.

The volume fraction of nanofluids can be obtained 
from the following equation (Chen et al., 2017):
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Where: mn = nanoparticles mass; mb = water mass;  
ρn = nanoparticle density.

The thermal conductivity of the nanofluid is calculated 
from the following equation (Kabeel et al., 2017):
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Where: kbf = thermal conductivity of water; knf = ther-
mal conductivity of nanofluid.

The thermal capacity of the nanofluid is obtained from 
the following equation (Xuan and Roetzel, 2000):
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Where: Cpp = thermal capacity of nanoparticles; Cpbf = 
thermal capacity of water.

The thermal conductivity of the base fluid (water) is 
obtained by (Nieto de Castro et al., 1986): 
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Discussion and results  
The optimum dimensionless fin thickness 

Comparison of optimum dimensionless thickness of 
fins in the heat sink for various nanofluids in different 
volume fractions, different diameters of nanoparti-
cles and various average temperatures is presented 
in this part, considering constant width and length of 
fins. Besides, the optimum volume fraction for each 
nanofluid is investigated. 

Table 3. Thermo-physical properties of nanoparticles (Sahota et al., 2020; Sahota and Tiwari, 2017)

Cu CuO Al Al2O3 Ti TiO2 Fe Fe2O3 Properties

400 20 237 40 22.5 8.95 72.7 6
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Fig. 3 presents the effect of volume fraction percentage 
of various nanofluids on the optimum thickness of fins 
in the heat sink with an average temperature of 310 K 
and nanoparticle diameter of 25 nm. The results from 
Fig. 3 show that in the volume fractions of 1% to 9%, 
the lowest thickness is related to aluminium (0.0076) 
in the volume fraction of 1% and the maximum value 
of thickness is related to copper nanofluid that has the 
value of 0.026 in volume fractions of 9%. It can be con-
cluded that minimum optimum dimensionless thick-
ness is related to the nanoparticles which have the 
minimum density and maximum thermal conductivity. 

Fig. 3. The optimum fin thickness in different volume fractions with 
a constant nanoparticle size and an average temperature
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In Fig. 5, the effect of various average temperatures of nanofluids (310, 320, 330 and 340 K) that flow through 31 
fins is investigated. It is observed from this figure that by increasing the input flow temperature, the optimum 32 
dimensionless thickness of fins increases and the increasing slopes for different nanofluids are almost the same. 33 

The optimum dimensionless thickness of fins for 
copper and iron nanofluids is higher than for their 
respective oxides, while for aluminium oxide, it is 
calculated higher than aluminium nanofluid. The op-
timum dimensionless thickness of fins for titanium 
and titanium oxide nanofluids is approximately equal. 
It is observed that in all volume fractions the optimum 
dimensionless thickness for Ti-water, Al2O3-water 
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and TiO2-water nanofluids is obtained approximately 
in the same range. With an increment in the volume 
fraction, the optimum dimensionless thickness of fins 
increases. Furthermore, the increasing slopes of vari-
ous nanofluids are different so that the maximum and 
the minimum slopes are related to copper and alu-
minium nanofluids, respectively. 

In Fig. 4, the optimum dimensionless thickness of 
fins at an average temperature of 310 K and the vol-
ume fraction of 5% for different nanoparticle diam-
eters is compared and evaluated. As it can be seen, 
by enhancement in the nanoparticles diameter, the 
optimum dimensionless thickness of fins decreases 
for various nanofluids. By increasing the particle size, 
thermal conductivity of nanofluids decreases and the 
optimum dimensionless thickness of fins is reduced 
due to an increasing nanoparticles diameter. In addi-
tion, the slope of decreasing optimum dimensionless 
thickness with an increasing nanoparticle diameter 
for various nanofluids is almost constant.

Fig. 4. The optimum fin thickness in different nanoparticle sizes 
with a  constant volume fraction and average temperature
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In Fig. 5, the effect of various average temperatures of 
nanofluids (310, 320, 330 and 340 K) that flow through 
fins is investigated. It is observed from this figure that 
by increasing the input flow temperature, the optimum 
dimensionless thickness of fins increases and the in-
creasing slopes for different nanofluids are almost the 
same. Increasing the temperature causes an increase 

in the thermal conductivity and the optimum dimen-
sionless thickness of fins. Furthermore, by tempera-
ture variations, the calculated optimum dimensionless 
thicknesses for alumina and titanium oxide nanofluids 
is the same. Therefore, in a flow with a low tempera-
ture, lower optimum thickness can be selected for all 
nanofluids which leads to less material consumption.
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The efficiency of fins and heat sink  24 
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volume fraction so that the minimum efficiency of 74.2% is obtained in the copper nanofluid with a 9% volume 29 
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efficiency of 79.1% is obtained in a nanoparticle diameter of 25×10-9 for the copper nanofluid. Furthermore, by 31 
increasing nanoparticle diameters, the efficiency of one fin is increased. It is also observed that the slopes of the 32 
efficiencies are different for various volume fractions and nanoparticle diameters. For the copper nanofluid, the 33 
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transfer coefficients for various nanofluids in a volume 
fraction of 0.1% are in the same region. By increasing 
volume fractions, the slope of a convection heat trans-
fer coefficient for different nanofluids varies so that, in a 
volume fraction of 9%, copper has the most heat trans-
fer coefficient of 1224 W/m2 K and copper oxide has the 
value of 910 W/m2 K. Besides, aluminium has the least 
heat transfer coefficient of 423 W/m2 K and alumina 
has the value of 585 W/m2 K. It is observed that only for 
aluminium nanoparticles the heat transfer coefficient is 
lower than the amount for its oxide nanoparticles (alu-
mina). Although a high volume fraction results in high 
optimum thickness and material consumption, it leads 
to the highest heat transfer coefficient.

The efficiency of fins and heat sink 

Figs. 7 and 8, respectively, present the effect of a volume 
fraction and a nanoparticle diameter on the efficiency of 
one fin in the optimum dimensionless thickness with an 
average temperature of 310 K for different nanofluids. 
Observing these figures, it can be seen that the efficien-
cy of the fin is reduce by enhancement in a volume frac-
tion so that the minimum efficiency of 74.2% is obtained 
in the copper nanofluid with a 9% volume fraction. In-
creasing the nanoparticle diameter leads to enhance-
ment in the efficiency of the fin, so that the highest ef-
ficiency of 79.1% is obtained in a nanoparticle diameter 
of 25×10-9 for the copper nanofluid. Furthermore, by 

increasing nanoparticle diameters, the efficiency of one 
fin is increased. It is also observed that the slopes of the 
efficiencies are different for various volume fractions 
and nanoparticle diameters. For the copper nanofluid, 
the highest efficiency loss results from increasing the 
volume fraction, while for the aluminium nanofluid, the 
lowest effect on the efficiency is observed by volume 
fraction variations. This effect is valid for nanoparticle 
diameter variations, too. 

Fig. 9 presents the efficiency of the heat sink in the 
optimum dimensionless thickness for various volume 

Fig. 7. The efficiency of the fin in different volume fractions with a 
constant nanoparticles size and average temperature
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fabrication of a thermoelectric solar still is equal to 281 $. Table 5 shows the cost of water productivity with interest 12 
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Table 4 Construction cost of the thermoelectric solar still 16 

Components 
 Cost of the 

thermoelectric solar still 
($) 

Salvage value ($) 

Thermoelectric solar still  
Plexiglas 180 36 
Pumps 20 4 

Thermoelectric module 30 6 
Galvanized support 15 3 

Heat sink 20 4 
PVC pipe 4 0.8 

Aluminium sheet 7 1.4 
Nut and bolt 5 1 

Total cost 281 56.2 
 17 
 18 
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fractions (1% to 9%) with the nanoparticle diameter of 
25 nm and the average temperature of 310 K. The ef-
fect of nanoparticle diameter variations (25 to 75 nm) 
is investigated in Fig. 10 with a volume fraction of 5% 
and an average temperature of 310 K of different na-
nofluids. The efficiency of the heat sink, same as for 
one fin, is reduced by increasing the volume fraction 
and is enhanced by increasing nanoparticle diameters; 
the efficiency of the heat sink is decreased.

Fig. 10. The efficiency of the heat sink in different nanoparticle 
sizes with a constant volume fraction and average temperature

11 
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Table 4. Construction cost of the thermoelectric solar still

Components Cost of the thermoelectric solar still ($) Salvage value ($)

Thermoelectric solar still

Plexiglas 180 36

Pumps 20 4

Thermoelectric module 30 6

Galvanized support 15 3

Heat sink 20 4

PVC pipe 4 0.8

Aluminium sheet 7 1.4

Nut and bolt 5 1

Total cost 281 56.2

Environmental analysis

Table 4 presents the construction cost of thermoe-
lectric solar desalination. The results show that the 
cost of fabrication of a thermoelectric solar still is 
equal to 281 $. Table 5 shows the cost of water pro-
ductivity with interest rate of 20% and life time of 
20 years in the solar still. The results show that the 
cost of water production in the solar still is equal to 
0.0699 $/l/m2.

Table 6 shows the embodied energy of solar stills. 
The energy used to produce different components in 
the solar still is about 185.8 kWh. Due to the lack of 
information about the thermoelectric production pro-
cess, we do not considered the embodied energy of 
the thermoelectric module (Parsa et al., 2020).

Table 7 shows the environmental, enviroeconom-
ic, exergoenvironmental and exergoenviroeconomic 
parameters for 20 years life time in the thermoelec-
tric solar still. It can be seen that the CO2 emissions 
depend on the embodied energy. The carbon dioxide 
mitigation based on the environmental parameter and 
exergoenvironmental parameters in the solar still are 
about 23.78 tons of CO2 and 1.04 tons of CO2, respec-
tively. Moreover, the enviroeconomic parameter and 
exergoenviroeconomic parameters in the solar still 
were about 344.79 $ and 15.02 $, respectively.
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Table 5. Cost analysis of solar stills with different life times and interest rates

Table 6. Embodied energy of different components of solar stills (Sahota et al., 2017; Yousef and Hassan, 2019)

Type of solar 
still

n (year) i (%) CRF FAC SFF S ASV AMC UAC
M
2(l/m .year)

CPL
2($/l/m )

Thermoelec-
tric solar still

20 0.20 0.200 18.613 0.005 18.6 0.003 2.79 21.402 945 0.0699

Type of solar still Components
Energy density Mass of 

component (kg)
Embodied energy 

(kWh)MJ/kg kWh/kg

Thermoelectric solar still

Glass 31.5 28.3 2 56.6

pump (PVC) 77.2 21.4 0.1 2.14

Heat sink (copper) 100 27.7 0.2 5.5

Aluminium sheet 199 55.2 0.3 16.5

Body (steel) 25 6.9 5.5 38.2

Hot reservoir (Plexiglass) 102 28.3 0.5 14.2

Insulation 55.6 15.44 0.3 4.63

Pipe (PVC) 77.2 21.4 0.3 6.4

Support (galvanized) 50 13.9 3 41.7

Total embodied energy 
(kWh)

- -
- 185.8

Table 7. Environmental and enviroeconomic parameter for the thermoelectric solar still

Parameter Thermoelectric solar still

Life time (years) 20

Embodied energy (kWh) 185.8

Annual energy output (kWh) 603.7

Annual exergy output (kWh) 35.19

Carbon dioxide emission during life time (kg) 371.6

Carbon dioxide mitigation during life time (ton Co2) 24.15

Environmental parameter (ton Co2) 23.78

Enviroeconomic parameter ($) 344.79

Exergoenvironmental parameter (ton ) 1.04

Exergoenviroeconomic parameter ($) 15.02
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Conclusion   
In this paper, a mathematical analysis was performed 
to optimize the geometry of fin thickness in a heat 
sink used in the thermoelectric cold and hot sides of 
the solar still, applying nanofluids of aluminium, alu-
mina, titanium, titanium dioxide, copper, copper ox-
ide, iron and iron oxide with water as the base fluid. 
Furthermore, the effect of volume fraction, nanopar-
ticle diameter and average temperature of nanofluid 
flow was investigated on optimization of the fins’ sec-
tion geometry. The summary of the most important 
results is as follows: 
 _ By increasing nanoparticle diameters at a constant 

volume fraction, the optimum dimensionless thick-
ness of the fin is reduced for various types of nano-
fluids and the slope of optimum dimensionless thick-
ness reduction is different for various nanofluids.

 _ In a flow with a high temperature, higher optimum 
thickness is calculated for all nanofluids, which leads 
to more material consumption.

 _ The highest heat transfer coefficient is obtained for 
copper and the lowest is obtained for aluminium. 

 _ The enviroeconomic parameter and exergoenvi-
roeconomic parameters in the solar still are about 
344.79 $ and 15.02 $, respectively.

 _ The optimum volume fraction of nanofluids with a 
25 nm particle diameter is in the range of 3.95% to 
3.65% to minimize the material consumption and 
maximize the heat transfer coefficient. 

 _ The heat sink thermal efficiency is reduced by in-
creasing the volume fraction and is increased by in-
creasing the nanoparticle diameter.

 _ The carbon dioxide mitigation based on the environ-
mental parameter and exergoenvironmental param-
eters in the solar still are about 23.78 tons of CO2 and 
1.04 tons of CO2, respectively.

lenght of heat sink (m)B

Specific heat capacity (J/g.K)CP

Nanoparticle Diameter (m)dP

Covection heat transfer coeffient (W/m2.K)h

Coduction heat transfer coeffient (W/m.K)K

Space between fin (m)D

Steffan Boltzman ConstantKB

Embodied energy (kWh)Ein

Annual energy output (kWh)(Een)out

Annual exergy output (kWh)(Eex)out

Environmental parameter (Ton Co2)Xco2

Exergoenvironmental parameter (Ton Co2)Xex,co2

height of heat sink (m)L

Nusselt numberNu

Total area of heat sink (m2)At

Area of fin (m2)Ac

Are of heat sink without fin (m2)Ab

Heat transfer of fin (W)qfin

Tepmprature of heat sink (K)Tw

Temprature of fluid (k)Tf

Optimum thickness of fin (m)topt

Efficiency of finη

Efficiency of heat sinkηHeat sink

Pi numberπ

Density (Kg/m3 )ρ

Volume fractionϕ

Nomenclature
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