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Integrated mapping is essential in geological studies to assess risks of earthquake hazards. Cartographic tech-
niques have become a commonplace approach to visualizing data in the continuous geologic and geophysical 
fields. However, traditional GIS mapping is a manual process with a time-consuming workflow that can lead to 
mistakes and misinterpretation of data. This study applied two mapping approaches to address this problem: 
Generic Mapping Tools (GMT) used for automated cartographic workflow employing scripts and QGIS used for 
traditional geologic mapping. The study area includes Ethiopia, notable for its complex geologic setting. The 
study aimed to analyse the relationships between the geophysical, geological, topographic and seismic setting 
of the country by presenting six new thematic maps: 

1 topography based on the GEBCO/SRTM15+ high-resolution grid;

2 geological units with consistent lithology and age from the USGS database;

3 geological provinces with major Amhara Plateau and Somali Province using USGS data;

4 geoid based on the Earth Gravitational Model 2008 (EGM-2008) grid;

5 free-air gravity anomaly model using satellite-based remote sensing data;

6 seismicity showing earthquakes and volcanos from 05/03/1990 to 27/11/2020.

The comparison of the topography, seismicity, geophysics and surface geology of the Afar Depression and the 
Great Rift Valley was based partly on extant literature on the geologic setting of Ethiopia which primarily focus-
es upon discussing tectonic processes that took place in the East African Rift System in the past. The current 
study contributes to the previous research and increases cartographic data on the geology and geophysics of 
Ethiopia. The outcomes can be implemented in similar regional projects in Ethiopia for geophysical and geo-
logical monitoring.
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Introduction
Geological and geophysical processes affect regional 
seismicity and geomorphologic structure. However, 
the geodynamic behaviour of the Earth makes these 
processes more sophisticated.  For instance, gravity 
couples to thermally induced density contrast in the 
mantle of the Earth which results in increased stress. 
In turn, imposed stress and consequent deformation 
of solid rock affect rock rheology. Visualizing complex 
geologic phenomena requires advanced methods of 
cartographic visualization, such as integrated mapping. 
Integrated mapping is crucial to geological mapping 
in the following aspects. First, it enables visualization 
of the multi-source datasets (geologic, geophysical, 
topographic and seismic data from different origins). 
Second, it allows processing data from various open 
repositories linking maps from a thematic series into 
a geographic entity across the study area. Data with 
various origin and resolution (GEBCO, EGM-2008, geo-
logical vector layers, geophysical raster layers) can be 
mapped using various cartographic techniques (Bal-
estro & Piana, 2007; Lemenkova, 2020a, 2020b; Karam 
et al., 2011; Suetova et al., 2005; Schenke & Lemenko-
va, 2008; Gauger et al., 2007; Pulsifer et al., 2008; Lindh 
& Lemenkova, 2021). 

For applications of the integrated mapping, each da-
taset (geophysical, topographic, geologic, tectonic) is 
generalized for use at a particular extent and spatial 
scales. For instance, clipping the area, set up of coor-
dinate projection and resolution of the graphics (300 
or 600 dpi in TIFF or other formats). The solution of 
complex data processing by a multi-tool cartograph-
ic approach combines various software and transfer 
data to different tools for an optimized workflow. Such 
a decision promises tighter integration of the geolog-
ic, geophysical and topographic data, better processed 
using a format-specific software where ArcGIS-native 
.shp files are processed by the QGIS, while .ngdc for-
mat of earthquakes tabular data is processed in a Ge-
neric Mapping Tool (GMT). Since each cartographic tool 
has a specific layout design, this necessarily requires 
its adjustment in a map series. It can be an identical 
coordinate extent or a projection defined for all the 
maps. Nevertheless, the integration of various tools for 
complex mapping presents a new cartographic func-
tionality aimed to improve the existing GIS approaches 

through more flexible mapping techniques (Desalegn & 
Mulu, 2021; Bagyaraj et al., 2019; Klaučo et al., 2013a, 
2013b; Ahmad et al., 2020). 

This study demonstrated the implementation of such 
an integrated mapping which applies both traditional 
GIS and scripting GMT techniques. Its advantage con-
sists in flexibility of the workflow for geologic mapping 
of Ethiopia. This research aims to assess the variations 
in geophysical, seismic, and geologic parameters and 
analyses the correlation between these phenomena 
with the country’s topography. It was achieved through 
the integrated cartographic approach which combined 
GMT scripting methods and QGIS for modeling and 
visualization of the high-resolution data. Using both 
methods, this paper provides examples of integrated 
data processing, visualization and mapping for two dif-
ferent modes: (1) GMT used to plot geophysical, seismic 
and topographic data; (2) QGIS used for assessment of 
geologic setting using USGS datasets, and descriptive 
geologic analysis from published literature. This result-
ed in a series of new maps of Ethiopia, which can help 
better understand this region’s complex relationships 
of geologic, topographic, and geophysical settings. The 
advantage of the traditional GIS is that it is easy to use 
and does not require advanced programming knowl-
edge necessary to write scripts. However, in contrast to 
the traditional GIS, GMT is a tool that saves time when 
plotting geospatial data, helping to ensure reproducibil-
ity of maps for cartographic analyses, while tradition-
al mapping is a time-consuming routine that cannot 
be easily reproduced. By saving time of data analysis 
through automation, GMT provides a more systemat-
ic and fast mapping workflow, minimizing the risk of 
cartographic errors. Thus, it constitutes an advanced 
tool that can be incorporated into geologic studies with 
mapping needs.

Materials and methods

Study area

Ethiopia (33°E–48°E, 3°N–15°N) is known above 
all for its contrasting topography (Fig. 1) shaped by 
complex geologic processes and tectonic influence of 
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active East African Rift continental rift zone. The ge-
ology of Ethiopia was outlined previously in studies 
on tectonics, petrology, geochemistry and volcanism 
(Gass, 1970; Hutchinson & Engels, 1970; George et al., 
1998; Hagos et al., 2016; Hunt et al., 2020; Bosworth, 
1992, 1994). The most prominent geologic objects of 
the country include the Ethiopian Highlands and the 
Afar Depression presenting a notable, morphological-
ly contrasting part of its topography.

The Afar Triangle is the only place on Earth where an 
oceanic rift develops within a continent. It presents an 
active tectonic area where the crust is slowly drifting 
apart, which results in a recurring sequence of repet-
itive earthquakes with long deep fissures in the ter-
rain, and the valley floor sinking in the Afar Depression 
(Wright et al., 2006). The new igneous crust under Afar 
has been generated during the early development of 
the Red Sea basin at magmatic rift zones (Mohr, 1989). 
The evolution and nature of the faulting, analysis of 
the distribution and ages of volcanoes (Barberi et al., 
1972), comparison of seismic and gravity data indicate 
that the eastern rift lies along a zone of the progres-
sive crustal thinning with local crustal disruption (Bak-
er et al., 1972). As a result, thinned continental crust 
is absent beneath the Afar Depression except for the 
Danakil Block.

As a result of unique tectonic processes, the Afar De-
pression is notable for active tectonic elements, such 
as spreading segments, volcanoes crossing regional 
faults with transverse structures, numerous NNW-ori-
ented normal faults, and multiple geothermal sites 
(Varet & Gardo, 2020; Varet, 2020). Two essential ac-
tive volcanic chains include Erta’Ale Range and Alayta 
Range (Barberi et al., 1970). Afar’s dynamic seismic 
events were recorded in late 2005 when 15 earth-
quakes greater than M5 and a small volcanic explosive 
eruption occurred within the Afar Rift at the Dabbahu 
volcano and Erta Ale volcanoes (Ayele et al., 2007).

Data and software

The study uses General Bathymetric Chart of the 
Oceans (GEBCO) data as a basis for topographic map-
ping (Fig. 1). GEBCO has been developed and main-
tained by the International Committee as an initiative 
for precise topographic mapping of the Earth with un-
precedentedly high resolution (Schenke, 2016; GEBCO 
Compilation Group 2020). Complex aspects of bathy-
metric mapping by GEBCO are discussed regarding 
its quality, spatial resolution and precision compared 
with other topographic grids, e.g. ETOPO1 (Lemenko-
va, 2020c, 2020d, 2020e). 

The geoid visualization (Fig. 4) is based on the Earth 
Gravitational Model 2008 (EGM2008) dataset (Pav-
lis et al., 2012). The geologic data (Figs. 2 and 3) are 
retrieved from the USGS (Pollastro et al., 1999). The 

Fig. 1. Topographic map of the study area. Mapping: GMT

The formation of the Afar Triple Junction dates back 
to the Early Miocene (23–25 M). At the same time, the 
individualization of spreading axes where new oceanic 
crust is generated is recent, i.e., less than 1.3 M. (Bar-
beri & Varet, 1978). Major geologic forces of its for-
mation include the complex tectonic-rift interactions. 
Specifically, it concerns the convergence between the 
Nubian, Somalian and Arabian Plates along the Zagros 
fold and thrust belt, and the uplift of the Afar Dome 
(Corti et al., 2015). The combination of these forces in-
creased by rising mantle plume resulted in a break up 
of the Arabian–Nubian Shield (Beyene & Abdelsalam, 
2005). As a result, the Afar Depression presents a junc-
tion area of the three large tectonic structures: the Red 
Sea, Gulf of Aden, and East African Rift System (Tazieff 
& Varet, 1971). The triple-spreading ridges of the Red 
Sea and the Gulf of Aden show up on land and connect 
with the East African Rift near Lake Abbe (Fig. 1).

Source: author
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marine free-air gravity grid was based on satellite re-
mote sensing data (Sandwell & Smith, 1997; Sandwell 
et al., 2014). Two leading software tools have been 
used for cartographic visualization and data process-
ing: 1) Generic Mapping Tools (GMT) scripting toolset 
version 6.1.1. (Wessel et al. 2019); and 2) QGIS version 
3.16 (QGIS.org, 2021).

Cartographic visualization

The GMT-based mapping (Figs. 1, 4, 5, and 6) was per-
formed using the scripting approach. The GMT-based 
maps were compiled using a combination of GMT 
modules used to plot every cartographic element 
by the lines of code. For example, the topograph-
ic mapping (Fig. 1) utilised ‘grdimage’ module in the 
following code: ‘gmt grdimage et_relief.nc -Cpauline.
cpt -R33/48/3/15 -JM6.5i -I+a15+ne0.75 -t60 -Xc -P -K 
> $ps’. The study area was then clipped using the 
‘psclip’ GMT module in the following code: ‘gmt 
psclip -R33/48/3/15 -JM6.5i Ethiopia.txt -O -K >> $ps’. 
The color palette was selected as ‘world’ and applied the 
following code with the ‘-T-3481/4326’ showing actu-
al elevation range: ‘gmt makecpt -Cworld.cpt -V -T-
3481/4326 > pauline.cpt’. 

The visualization of the geoid (Fig. 4) was carried out 
using the two files in the original adf format, a raster 
data format that stores spatial data as a binary grid of 
rows and columns of cells that comprise together the 
total grid. These files were converted to the GMT format 
using the code ‘gmt grdconvert n00e00/w001001.adf 
geoid_IQ.grd’ and ‘gmt grdconvert n00e45/w001001.
adf geoid_IR.grd’. Afterwards, the images were inspect-
ed using gdal ‘gdalinfo geoid_IR.grd -stats’ to check 
the data range. The color palette was generated using 
the expression ‘gmt makecpt -Chaxby -T-50/10/1 > 
colors.cpt’. The coloring was applied using the follow-
ing scheme: ‘gmt grdimage geoid_IR.grd -Ccolors.cpt 
-R33/48/3/15 -JM6.5i -P - Xc -K > $ps’.

Because the initial map has not supplied with con-
tours and could therefore not be readily analyzed, 
plotting isolines for a better reading of values was 
performed using the code ‘gmt grdcontour geoid_
IR.grd -R -J -C1 -A1+f9p,25,black -Wthinner,dimgray 
-O -K >> $ps’. Adding cartographic legend was done 
by the code ‘gmt psscale -Dg33.0/2+w16.0c/0.15i+
h+o0.3/0i+ml -R -J -Ccolors.cpt -Bg5f1a10+l"Color 

scale: haxby for geoid and gravity [R=-107/23/1, 
C=RGB]" -I0.2 -By+lm -O -K >> $ps’. The initial file gen-
erated by GMT was in a PostScript format. Therefore, 
to put the file into a known acceptable format, it was 
converted using the code ‘gmt psconvert Geoid_ET.ps 
-A0.5c -E720 -Tj -Z’.

Mapping gravity (Fig. 5) was performed us-
ing the code ‘gmt grdimage et_grav.nc -Ccolors.
cpt -R33/48/3/15 -JM6.5i -I+a15+ne0.75 -Xc -K > $ps’. 
The geological lines and points in the map of seismicity 
(Fig. 6) were added using the ‘psxy’ module: ‘gmt psxy 
-R -J volcanoes.gmt -St0.4c -Gred -Wthinnest -O -K 
>> $ps’. The earthquakes were added using the code 
‘gmt psxy -R -J quakes_ET.ngdc -Wfaint -i4,3,6,6s0.1 
-h3 -Scc -Csteps.cpt -O -K >> $ps’, where the 
‘-i4,3,6,6s0.1’ flag generates the points of the earth-
quakes using the table values of earthquake magni-
tude, depth and coordinates.

Several variables related to the tectonic setting of 
Ethiopia were visualized by GMT, for instance, tecton-
ic plates boundaries were added using the following 
code ‘gmt psxy -R -J TP_Arabian.txt -L - Wthicker,pur-
ple -O -K >> $ps’. The ridges were added using the 
code: ‘gmt psxy -R -J ridge.gmt -Sf0.5c/0.15c+l+t -W
thin,red -Gyellow -O -K >> $ps’. The geologic mapping 
(Figs. 2 and 3) were performed using QGIS software. 
The geologic units (Fig. 2) and provinces (Fig. 3) were 
visualized using standard cartographic tools: Layer 
Managements and Layout Manager. The background 
map is presented by the OpenStreetMap layer con-
nected via the Web/QuickMapServices plugin of QGIS.

Results and discussion

Topographic mapping

A complex and highly contrasting relief of Ethiopia 
formed due to the geologic evolution, and tectonic pro-
cesses present the topographic heterogeneity. Thus, 
according to the GEBCO/SRTM15+ remote sensing data 
inspected by GDAL, the country’s topography varies 
from −3.481 km (Gulf of Aden) to 4.326 km in the Ethio-
pian Highlands. The most critical factors that sculptured 
such a diverse modern topographic shape of Ethiopia 
include the formation of the East African Rift and the 
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Afar Triple Junction, as well as the opening of the Red 
Sea as a result of the lithospheric plate movements, 
volcanic activity, and rifting (Bosworth, 2015; Chorow-
icz, 2005). Besides, tectonic and climate processes also 
largely control sedimentation patterns and surface ge-
ology, as discussed in previous papers (Cerling & Pow-
ers, 1977; Gohl et al., 2006a, 2006b; Ali Kassim et al., 
2002). In turn, the topographic variability of the country 
creates excellent conditions for the formation of diverse 
local habitats providing environmental conditions for a 
variety of species during climate extremes. The topo-
graphic map of Ethiopia (Fig. 1) was visualized both for 
the geological comparison (Figs. 2 and 3) and for the 
interpretation of the geophysical setting (Figs. 4, 5, and 
6) based on its present geomorphological features.

Fig. 2. Geologic units in Ethiopia. Mapping: QGIS

Geologic mapping

The geological structure of Ethiopia (Fig. 2) has been 
strongly affected by rifting and volcanic processes, 
as shown in Fig. 6, reflected in the geomorphologi-
cal structure and topography of the country. The most 
prominent geologic units include the outcrops and 
facies of the Cretaceous Jurassic (KJ), Jurassic (J), 
and Cretaceous (K), among others. The Quaternary 
(Q), Quaternary eolian/aeolian (Qe), and Tertiary in-
trusives (Ti) environments are primarily found in the 
Afar (Fig. 2). Other significant outcrops include the ba-
saltic rocks of early Tertiary (T), corresponding to the 
Somali Plateau and Ogaden Desert in NE Ethiopia.

The volcanic activity of the Quaternary age occurred 
in the eastern part of the country (Fig. 2), including 

the Afar Depression, which corresponds to the previous 
findings (Kalb, 1978) and shows remains of the volcanic 
features preserved on the Somali Plateau and the area 
east of the Great Rift Valley (compare Figs. 1 and 2). The 

tectonic evolution of the rift valley has about east-west di-
rection, as also reported in previous studies (Le Pichon & 
Francheteau, 1978). The Tertiary intrusives (Ti) and flood 
basalts with basaltic and felsic volcanic rocks are the 

Source: author
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dominating geologic units in the country’s west, covering 
a significant part of the Ethiopian Highlands (Fig. 2). The 
Precambrian and Cambrian undifferentiated units (pCm) 
are found in the southern regions of the country (Fig. 2). 
The geologic provinces (Fig. 3) show the general divi-
sion of the country into two large units: the Amhara Pla-
teau (slate blue colour) and the Somali Plateau (bisque 

colour). The latest one is a part of the Ethiopian Plateau, 
composed of the Simien Mountains National Park, Lake 
Tana with Blue Nile outflows, and Omo and Mago Nation-
al Parks in the south of the country. The Gambela Nation-
al Park is predominantly located in the Sud province. The 
small northern region includes the South Red Sea Shield 
province boarding the Danakil Depression.

Fig. 3. Geologic provinces in Ethiopia. Mapping: QGIS

Compared with the previous geologic maps of Ethiopia 
(Kazmin 1972, 1975; Kazmin & Berhe, 1981; WoldeGa-
briel et al., 1990; Yirgu et al., 2006; Salvini et al., 2012), 
this study presents the updated maps based on the de-
tailed vector data received from the USGS using QGIS. 
The proposed geological maps visualized a sequence of 
unites (Fig. 2) and provinces Fig. 3), as well as volcanic 
activities and earthquakes using recent data from the 
IRIS dataset (Fig. 6). The undulations of the geoid (Fig. 4) 
and free-air gravity anomalies (Fig. 5) demonstrate 

intensive gravity variations. The comparison of these 
maps reveals that the geological and geophysical set-
ting of the area, in general, follows the topography that 
reasonably represents the rift structural pattern, direct-
ed approximately North-East to South-West. Moreo-
ver, current maps well match the existing cartographic 
works in previous studies. However, this research pro-
vides more details on Ethiopia’s geological and geo-
physical features due to the high-resolution data and 
advanced methods of mapping.

Source: author



89Environmental Research, Engineering and Management 2022/78/1

Fig. 4. Geoid gravitational model of Ethiopia. Mapping: GMT

Geophysical mapping

The geophysical fields are represented on the geoid (Fig. 
4) and free-air gravity anomalies in Faye’s reduction (Fig. 
5). The analysis of variations in free-air gravity anoma-
lies over Ethiopia (Fig. 5) shows that the character of 
uplift is similar to the topographic highs observed on the 
topographic map (Fig. 1). For instance, the isolines of 

Faye’s gravity well correlate with the topographic con-
tours (Figs. 1 and 5). Hence, the geophysical mapping 
(Figs. 4 and 5) presents the analysis of the correlation 
between the modeled geoid and free-air gravity anom-
aly fields, with geologic, topographic, and seismic data 
of Ethiopia and major geomorphological areas, such as 
the Afar Depression and Ethiopian Highlands.

Source: author
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Fig. 5. Free-air gravity anomalies over Ethiopia. Mapping: GMT

The visualization of the free-air gravity anomalies in 
Faye’s reduction revealed an increase in values above 50 
mGal (Fig. 5), with a maximum of ca. 100 mGal in the 
highest peaks of the Ethiopian Highlands. This well cor-
responds to the topographic extent of the Ethiopian High-
lands. On the contrary, the lowest values, that is, below 
−50 mGal, are typical for river valleys visible in the south 
and on the inter-mountainous valleys of the Ethiopian 
Highlands (compare Fig. 1 with Fig. 5). The analysis of 
the free-air gravity anomalies suggests that the litho-
sphere beneath the Afar and Danakil depressions (which 
corresponds to the areas with 0 to −25 mGal) is reduced 
in density resulting in lower recorded values of gravity. 
These results support previously published reports on 
gravity fields in East Africa (Allan, 1970; Browne & Fair-
head, 1983) and contribute through the updated mapping 
using modern tools and data.

The geoid visualized using EGM-2008 (Fig. 4) shows a 
distinct trend-oriented in NW-SE direction. This well cor-
responds to the general oblique orientation of the Great 
Rift Valley in Ethiopia (Mohr, 1962; Mohr & Gouin, 1976; 
Abebe et al., 2005; Corti, 2008). The values here generally 
decrease to the SE (−33 m) and reach the maximal NW 
(−1 m) in the Ethiopian Highlands. However, the general 
importance of geoid is negative, which might be, among 
others, the impact of the Indian geopotential height 
anomalies, which are the largest world’s negative geoid 
values. In general, the geoid heights in Ethiopia tend 
to increase to the inner NW regions of the country and 
lower values in the SE and the Somali Plateau. 

Gravity and seismic maps covering Ethiopia and sur-
rounding water areas (the Red Sea and the Gulf of Aden) 
remain an essential issue in the context of geophysical 

Source: author
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Fig. 6. Seismicity in Ethiopia: distribution of earthquakes and volcanoes. Mapping: GMT

research of Africa. The main mapping challenges as-
sociated with visualizing Ethiopia include detailed and 
automated mapping using high-resolution data and 
scripting techniques for a rapid workflow. New technol-
ogies of GMT used for plotting maps in Figs. 1, 4, 5, and 
6 demonstrated effective solutions to finding new map 
styles and improving the topographic and geophysical 
content. The location of this region explains the need for 
detailed geophysical maps of Ethiopia in the tectonically 
active zone of the Great Rift Valley with recorded seis-
micity and volcanism.

Mapping seismicity

Map of seismicity (Fig. 6) details the distribution of volca-
noes and earthquakes over Ethiopia and their magnitude 
according to the IRIS (Incorporated Research Institutions 

for Seismology) dataset. The map analysis shows that 
volcanoes are mainly distributed along the Great Rift Val-
ley. Besides, the seismicity is the highest in the Afar Triple 
Junction region, which continues to the east in the Gulf of 
Aden (Fig. 6). Comparing the distribution of earthquakes 
and volcanoes of Ethiopia (Fig. 6) to the topographic and 
geophysical maps (Fig. 1 to Fig. 5) reveals correlations 
between the extent of the Great Rift Valley, the Afar Trian-
gle, and the volcanoes located in this area. Besides, the 
distribution of the volcanism in the current map (Fig. 6) 
corresponds to the previous studies on the volcano-tec-
tonic setting of Ethiopia and the Great Rift Valley (Civetta 
et al., 1975; Hart et al., 1989; Chernet et al., 1998; Hunt 
et al., 2020; Rouwet et al., 2021). The comparison of the 
distribution of earthquakes (Fig. 6) to the geoid model 
(Fig. 4) reveals that the Great Rift Valley, notable for the 

Source: author
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volcanic activity (Fig. 6), clearly divides the two regions: 
the one with higher values of gravity (values over −10 
m) and lower values (values below −10 m), respectively. 
The earthquakes are associated with continental rifting, 
particularly in seismically active regions like the Ethio-
pian Great Rift Valley. Therefore, mapping earthquakes 
and active volcanism contribute to assessing the risk of 
seismic hazards in Africa. 

Conclusions
Ethiopia is one of the most important geological regions 
of Africa. It has contrasting topography, extreme climate 
variability, and high seismicity, making it a geographi-
cally unique and distinct region. Besides, it is one of the 
most tectonically complex regions in the world due to the 
unique structure of the Afar Triple Junction and the Great 
Rift Valley. Several thematic geospatial datasets and two 
distinct cartographic approaches (GIS and GMT mapping) 
were linked to show the correlations between Ethiopia’s 
topography, geophysical, seismic, and geologic settings 
to map such a complex region.

New topographic, geologic, geophysical, and seismic 
maps represent a helpful research tool for further ge-
ologic and geophysical investigation and comparative 
analysis concerning the topographic characteristics of 
Ethiopia. The presented maps were evaluated using 
comparative analysis to propose an investigation into 
the geographic setting of Ethiopia, based on the rela-
tionship between geology and the geophysical vari-
ables (e.g., geoid and gravity anomalies). Using these 
maps, this paper evaluated and visualized topographic, 
geoid, and gravity models to compare topography and 
seismicity. The location of volcanoes and earthquakes 
is associated with the Great Rift Valley and the Afar 

Depression, the most seismically active areas of the 
country. Accurate mapping enabled substantial correla-
tions between these parameters in a series of themat-
ic maps. The results demonstrated that the seismicity 
of the country is sensitive to the distribution of the rift 
zones and tectonic lineaments and corresponds well 
to the fault lines and topographic lowlands in the Afar 
Depression and the Great Rift Valley. The geoid undula-
tions and free-air gravity anomaly patterns across the 
country were mapped, examined, and discussed for the 
associated geologic setting and topographic context of 
the relief in various parts of Ethiopia.

Despite widely used GIS in geosciences (Coltorti et al., 
2009; Poppe et al., 2013; Klaučo et al., 2014; 2017; Le-
menkova et al., 2012, Lemenkova, 2021; Sembroni et 
al., 2017), the application of GMT scripting in mapping 
continues to grow due to the advantages of the automa-
tization in cartography achieved through coding (Gauger 
et al., 2007; Lemenkova, 2019a, 2019b, 2019c). The sig-
nificant advantage of scripting consists in the increased 
precision, speed, and quality of data processing and vis-
ualization (Brus, 2019; Lemenkov & Lemenkova, 2021; 
Becker, 2005; Lemenkova, 2019d, 2020f; Pignalberi, 
2021). This study presented the example of integrated 
mapping, a topic of increasing importance to geophysi-
cal studies and seismic hazard risk assessment in such 
geologically complex regions as Ethiopia. Using the 
presented maps, future studies could then focus on ge-
omorphological mapping in such a way as to continue 
the thematic investigations of East Africa. The reported 
data can also be considered for use in other regions of 
Africa, which would bring benefits to geophysical and 
geologic explorations. The presented methods of GMT 
and QGIS can be repeated in similar studies that include 
cartographic visualization of geospatial datasets.
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