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The Tank model by Sugawara is included in the lumped model category. As with other types of lumped mod-
els, the effectiveness of the application of the Tank model is largely determined by the parameter optimization
method applied and the quantity of training data involved in the calibration process. This article proposes the
Tank-DE model to transform rain data series into discharge in a watershed. The Tank-DE model is built from
a combination of a simulation equation system based on the Tank model and a multi-parameter optimization
equation system based on the Differential evolution (DE) Algorithm. This article also examines the sensitivity
analysis of the model to study the effect of the length of the training data series involved in the calibration
process on the predictive discharge quality generated by the Tank-DE model. Thus, the minimum length of
the training data series can be recommended, related to the application of the model. The results of the anal-
ysis show that the Tank-DE model can present the relationship between rainfall data series and daily period
discharge very well. The results of the sensitivity analysis show that there is an indication that the longer the
training data series, the more quantitatively positive impact on the performance of the model. The calibration
process involving a training data set for 1 year produces a very good value of the coefficient of determination
(r? = 0.94), but the indicator decreases drastically at the validation stage. The calibration process involving a
relatively long training data series produces a more consistent value of the coefficient of determination. This
indicates that the Tank-DE model can be an alternative solution to solve the problem of scarcity of discharge
data series which is a classic problem in water resource development activities.
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Introduction

In hydraulic building engineering activities, the dimen-
sions and hydraulic characteristics of its components
are largely determined by the discharge value which is
used as a design benchmark. The design benchmarks
can only be determined accurately if the building plan
site provides information about discharge fluctuations
in sufficient quantity and quality. Therefore, the effort
to extend the historic discharge data series becomes
a necessity, if at the planned site there is no sufficient
observational data series available to determine the
design benchmark size.

There are two classic problems in planning and design-
ing hydraulic buildings on rivers. 1) There is scarcity of
discharge data series on the building plan site. In many
cases, discharge data series are obtained from obser-
vations during the course of the study, usually not
more than 1 year. These data are only sufficient for the
need for calibration of the method parameters applied
to extend the discharge data series. 2) Practical meth-
ods for extending the discharge data series that are
often used in Indonesia are empirical methods, includ-
ing FJ Mock method, NRECA, and others. The applica-
tion of this method is very limited by the dimensions
of space and time, and its use is limited to analyzing
monthly period discharge data. This method is not
flexible in anticipating hydrological changes in a wa-
tershed, so the results obtained are often inaccurate.
This study provides an alternative solution to solve this
problem by utilizing the advantages of the Tank model
which can be set for daily, weekly, and semi-monthly
discharge analysis, even for hourly periods as needed.
To be effective and applicable, the Tank model equa-
tion system is combined with the Differential evolution
(DE) algorithm to calibrate the parameters. The Tank
model is considered more flexible than the empirical
method because it involves more complex watershed
parameters in its analysis.

Efforts to increase the effectiveness of the Tank mod-
el by involving optimization methods to find the opti-
mal value of its parameters have been proposed by
many previous researchers. The application of the
Kalman Filter with a recursive algorithm to calibrate
the tank model parameters was proven to be accurate
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in predicting flood events in the Wi-Chun Bazin 472.53
km?, which is located in the middle of the Nakdong
River basin in Korea (Lee and Singh, 1999). The appli-
cation of the Powell Tank-Multi start model to the Gao-
Ping Creek watershed in Taiwan (792 km?), involving
the daily period data set for the 1 January 1991 to 31
December 1992 period, also showed accurate results
(Chenetal., 2005). The Tank-Marquard Algorithm mod-
el successfully presented the daily period rain-runoff
relationship at the Terauchi Watershed (5055 ha) in
Fukuoka Japan and the Ciriung Watershed (120 ha) in
the Banten Province of Indonesia (Setiawan, 2014).

Metaheuristics is an advanced method based on heu-
ristics to solve optimization problems efficiently (Talbi,
2009). The development of a revolutionary and reliable
metaheuristic method in solving large and complex
systems of equations makes this method attractive to
be applied to solve optimization problems to find the
optimal value of the parameters of the hydrological
conceptual model. The combination of metaheuristic
methods with the Tank model for the transformation
of rain data series into runoff has been proposed by
many researchers around the world. Tank model-Par-
ticle Swam Optimization (PSO) algorithm has been
successfully applied to the Shigenobu Watershed in
Japan (Santos et al.,, 2011). Tank Model-Genetic Al-
gorithm (GA) (Ngoc et al,, 2013), Shuffled Complex
Evolution (SCE), and PSO (Kuok et al., 2011) have
also managed to show a very good performance. The
combination of the Tank model with the SCE, GA, PSO,
Artificial Immune System (AIS), and DE algorithm has
also been successfully applied to the Yellow River
watershed in China and the Reynold Creek Boise ID
watershed, Mahantango Creek University Park water-
shed, Little River Tifton watershed in the United States
of America. The five optimization methods work well,
but the GA and PSO algorithms show better results in
terms of accuracy and speed of convergence (Zhang et
al., 2012). The combination of the Tank model with the
PSO Algorithm for flood discharge analysis in urban
areas in Taiwan has shown very good performance
(Hsu, 2015). The combination of the Tank model with
the SCE Algorithm has also been successfully applied
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to flood simulations in terraced rice fields in Taiwan.
The Tank-SCE model represents two major flood
events caused by Plum Rain on 9-16 May 2005 and
Typhoon Matsa on 1-6 August 2005 (Chen et al., 2014).

The aims of this research are as follows: 1) to build
a Tank-DE model for the transformation of rain data
series into daily period discharge; the model applica-
tion uses the MATLAB M-FILE program code compiled
by the author himself; 2) to examine the effect of the
length of the training data series involved in the cali-
bration process on the quality of the discharge data
series as predicted by the model; and 3) to examine
the effect of the length of the training data series on
the sensitivity level of the tank model parameters. Re-
search related to items 2) and 3) was not found in the
previous references. The Tank-DE model was devel-
oped from a combination of the Tank model simula-
tion equation system and the Tank model parameter
optimization method based on the DE Algorithm. The
model testing uses a daily period data series, and as
a case study is the Lesti Watershed in Malang Regen-
cy, East Java, Indonesia. The sensitivity level analysis
is intended to examine the effect of the length of the
training data series on the quality of the discharge data
series from the model predictions, as well as to de-
termine the level of consistency of the optimal values
of the model parameters. The analysis was carried

Fig. 1. Location of the case study (after Sulianto et al., 2020)
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out through 5 scenarios with various input lengths
of training data series, respectively, 1 year, 2 years, 4
years, 6 years, and 8 years. The results of the research
are expected to increase the effectiveness of the ap-
plication of the Tank model and become an alternative
solution in solving the problem of limited discharge
data series, which is often a classic problem in water
resource development activities in developing coun-
tries, including Indonesia.

Materials and Method

Case study

The case study in this study is the Lesti watershed
at the control point of the Tawangrejeni automatic
water level record (AWLR) station as shown in Fig. 1.
The Lesti watershed is included in the Upper Bran-
tas watershed, with an area of 314.19 km? Accord-
ing to its physical characteristics, the Lesti watershed
is divided into 3 zones, namely, up-land (Au = 87.02
km?), hill-slope (Ah = 109.89 km?), and bottom-slope
(Ab = 122.23 km?). Lesti watershed is geographi-
cally located at 8°2'50"-8°12'10" South latitude and
112°42'58"-112°56'21" East longitude, and admin-
istratively is located in Malang Regency, East Java
Province, Indonesia.

Lesti Watershed Map

Legend :
A Rainfall station
®  AWLR station
~— Boundary rainfall station
BN Upstream watershed
Midstream watershed
Downstream watershed

Inset Map : Brantas River System

Scale 1 : 200.000

] LESTI
bt 1 WATERSHED
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There are 3 types of hydro climatological data as input
in the application of the Tank model, namely, evapo-
transpiration, rainfall, and discharge. The length of the
hydro climatological data series involved in this study
was 14 years, recorded from 1 January 1 2007 to 31
December 2020. Potential evapotranspiration data
were obtained from the analysis using the Modified
Penman Method. Climatic variables as input data in
the Modified Penmann Method include air tempera-
ture, wind speed, humidity, and sunlight. The climate
data series is the monthly average data from the re-
cording results of the Karangkates climatology sta-
tion. The results of the analysis show that the average
potential evapotranspiration of the Lesti watershed
is 1056.25 mm per year, the minimum is 828.94 mm
per year and the maximum is 1160.87 mm per year.
Rainfall data involved is daily period data recorded at
Dampit, Tirtoyudo, Wajak, and Turen rainfall stations.
Regional rainfall was calculated with the Thiessen
polygon method. The weighting factors for all four
rainfall stations, respectively, are 0.38, 0.09, 0.19, and
0.34. The calculation results show the average rainfall
of the Lesti watershed is 2417.31 mm per year, with
a minimum of 1860.35 mm per year and a maximum
of 3231.00 mm per year. The discharge data series
at AWLR Tawangrejeni shows a mean value of 33.27
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m?3/s, a minimum of 7.06 m*/s, a maximum of 56.81
m?/s, and a mean standard deviation of 10.03 m*/s.
The fluctuation of potential evapotranspiration data,
rainfall, and daily period discharge are graphically
shown in Fig. 2.

The hydro climatological data series is further divided
into two groups, namely training data sets and test-
ing data sets. The data series for the period 1 January
2007 to 31 December 2014 was used as a training data
set for the model calibration process, and the hydro
climatology data series from 1 January 2015 to 31 De-
cember 2020 as a testing data set for model validation.
The comparison of the statistical parameters of the
training data set and the testing data set is shown in
Table 1. From the results of the two-way statistical test
of the two data groups using the mean test (t-test) and
variance test (F-test), it is concluded that the training
data set and the testing data are homogeneous.

Tank model simulation

The number of tanks involved in the simulation pro-
cess is highly dependent on the physical character-
istics of the watershed under study. The higher the
level of physical heterogeneity of a watershed, the
variations in the use of tanks become more complex.
However, of the many types of the Tank model, the

Fig. 2. Hydroclimatological data from 1 January 2007 to 31 December 2020 in the Lesti watershed
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Table 1. Statistical characteristics of training and testing data sets
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Data Statistical parameters Unit Training data Testing data
Period day 3]1 ?gcueanrwybgsg& 4 3]1 JSencue?;yng]z?Jzo
Number of point data 2925 2194
Evapotranspiration Mean mm/year 897.78 856.78
Precipitation Mean mm/year 2235.73 2659.41
Mean m3/s 33.61 3259
) Minimum m3/s 7.55 7.06
Discharge )
Maximum m3/s 56.81 52.83
Deviation standard m3/s 10.99 10.61

application of a series tank arrangement consisting
of four tanks (the Standard Tank model) is often the
choice because of its simplicity and relevance to the
physical characteristics of the watershed in general.
The simulation scheme for the standard tank mod-
el is shown in Fig. 3. In the standard tank model, a
watershed is represented by tanks arranged vertical-
ly with the assumption that each tank can represent
a homogeneous sub-soil. The first tank to the fourth
tank, respectively, will contribute to the occurrence
of surface flow and sub-surface flow, intermediate

Fig. 3. Schematic of a standard Tank model simulation

T T T Evapotranspiration (Ep)

Evapotranspiration (Ep) T ? T

flow, sub-base flow, and base flow. The standard tank
model has 16 parameters whose values must be rel-
evant to the hydrological characteristics of the water-
shed under study.

In the Tank model simulation, water can fill the reser-
voir below it and can leave it if evapotranspiration is
more dominant. As input variables in the application
of the Tank model are regional rainfall (P), evapotran-
spiration (Et), and the value of the relevant parame-
ters. The output variable is total discharge (Q), which
is a superposition of surface flow (qA2), sub-surface

Tank Model parameters :

Tank A:
JQQ( Precipitation (P) Precipitation (P) &J) SAO = initial hight of water Tank A (mm)
I ;‘z_r hAl = hight of horizontal outlet 1 Tank A (mm)
{
Surface flow (gA2) A2 «— o hA2 = hight of horizontal outlet 2 Tank A (mm)
gAl < :l Az SAl A CAD = Coefficient outlet AO
Sub-surface flow (gA1) | CA1 = Coefficient outlet Al
QAUP — y9A0 CA2 = Coefficient outlet A2
Intermediate flow (gB1) q81 T . TankB:
hB1 SB B SBO = initial hight of water Tank B (mm)
| y hBl = hightof horizontal outlet 1 Tank B (mm)
_ l* gB0 CBO = Coefficient outlet BO
I \f—$ CB1 = Coefficient outlet B1
L TV B2 gCl ¢«—— T .
sc C Tank C:
het SCO0 = initial hight of water Tank C (mm)
——|‘ - . hCl = hight of horizontal outlet 1 Tank C (mm)
5 ' 0 b = va CCO = Coefficient outlet CO
ose flow (aD) « sof| D CC1 = Coefficient outlet C1
Tank C:
SDO initial hight of water Tank D (mm)

cD Coefficient outlet D
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flow (gAT), sub-base flow (gC1), and base flow (gD).
Another outcome that can be explored is the fluctua-
tion of the water level in each tank (SA, SB, SC, SD).
This variable can be analogized as fluctuations in the
groundwater level in each soil layer zone. The per-
formance of the Tank model is largely determined by
the accuracy in determining the value of each of its
parameters. In this regard, the parameter calibration
process becomes a very important part. The process
of calibrating a large number of parameters simulta-
neously is certainly not effective if it is carried out by
“trial and error”; therefore, the application of a reliable
parameter optimization method is important to im-
prove its performance.

In this study, the application of the Tank model uses
the following assumptions: 1) each layer of soil in the
watershed is considered to have uniform character-
istics so that it can be represented by a tank, 2) the
value of model parameters is considered constant
during the analysis period, 3) the river discharge in
one day analyzed from the input data of daily evapo-
transpiration and daily rainfall is a constant quantity,
and 4) river discharge is a function of rainfall, evapo-
transpiration, and physical characteristics of the wa-
tershed. Other factors such as interception, snow, and
others are not taken into account. So, the model de-
veloped is only relevant for watersheds in the tropics,
including Indonesia.

The volume balance equation for each tank is ex-
pressed as:

dsA

TankA : ©2=P — Et — qA1— qA2 — qAO m
Tank B : 2= qA0 — qBO — qB1 @
Tank C : £ = qBO — qC1 — qC0 3)
TankD : =2 = qC0- qD @)

The value of runoff and infiltration through the tank
outlet is directly proportional to the water level at the
outlet, expressed as:
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Tank A :qA0 = CAO * SA; qA1 = CA1* (SA— hAl); (

qA2 = CA2 x (SA — hA2) %

Tank B :qB0 =CB0xSB,; qBl1 =CB1x*(SB—hB1) ()

Tank C : qCO = CCO=SC; qC1 = CC1*(SC—hC1) (7

TankD :qD = CD * SD ®)
The total runoff period t in mm/day is expressed as:

q(t) = qA1(t) + qA2(t) + qB1(t) + qC1(t) + qD(t) (9)
In units of m*/s, it is stated:

Q(t) = q(t). A/86.4 (10)

Although the tank components represent a simple lin-
ear system of equations, the series of combinations
of tank components results in a completely non-line-
ar integral operation.

Model calibration

The calibration process is directed at finding the op-
timal value of the tank model parameters. The cali-
bration process can be analogized as an optimization
process that has the objective function of minimizing
the deviation of the observed discharge curve (Q°)
and the simulation results from the Tank model
(@s™). In the heuristic method, the objective function
is expressed as a fitness function. The definition of
the fitness function in the case of optimization of hy-
drological model parameters has been proposed by
many previous researchers, including the minimiza-
tion of root mean square error or RMSE (Hsu, 2015;
Wang et al,, 2012; Sulianto et al., 2018; Sulianto et
al., 2020), minimization of sum square error (SSE)
(Darikandeh et al., 2014; Paik et al., 2005), maximiz-
ing Nash-Sutcliffe model efficiency or NSE (Xuesong
Zhang et al., 2008; Bao et al., 2010; Tolson and Shoe-
maker, 2007), minimization of mean square error or
MSE (Ngoc et al., 2013), minimization of relative error
or RE (Santos et al,, 2011; Kuok et al,, 2011). The fit-
ness function in this article is to minimize the RMSE
value, expressed as:
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n sim _ Hobs 2
F = min[RMSE] = min [\/ M] (an

Where: F - fitness value;

Q'™ — discharge from model simulation in
period t;

QPP _ discharge observation period t;

n - number of data points.

As a constraints function in the optimization process are:
The Tank model simulation equation system is ex-
pressed as

Q(t)=F(P(t), Ep (b, A 16 parameters Tank model);

Lower boundary (lb) and upper boundary (ubj) of initial
value height of water in tanks (SA0, SBO, SCO, SDO);

Lower boundary (Ib) and upper boundary (ub) of hori-
zontal outlet height in tanks (hAT, hA2, hB1, hC1);

Lower boundary (lb) and upper boundary (ub) of coef-
ficient outlet value in tanks (CAO, CA1, CA2, CBO, CBI,
Cco, cC1, CD).

Model validation

The model validation process uses a testing data set
which is not involved in the model calibration process.
The performance of the model is measured using de-
viation indicators, namely, RMSE, mean absolute er-
ror (MAE), standard error X (X), square standard error
X (X?), relative error (RE), square relative error (RR),
and Nash-Sutcliffe model efficiency (NSE) are calcu-
lated using the following equation.

MAE = 3L Jop - 7| 02

i n |ngs _ Qgim|

X = g =1
7 &i=1 \/@ (13)
L2
X2 _1 n |ngs ~ leml (14)
T pAi=t Q?bs
obs _ Asim
RE = Iyn M (15)

n i=1 ngs
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s 12

obs sim

1on QPP -QF™|
n &i=1

RR = (16)

2
ngs

2a(08™ - 0f%)’

Z?zl(ngs _ Qmean)z

NSE =1 - an

Where:  @§'™ - discharge from simulation model

period t, m*/s;
Q2bS — observation discharge period t, m3/s;

Q{’f’f - observation discharge period t-1, m*/s;

Q™M€A™_mean of observation discharge, m*/s;

n —number of data points.

Differential evolution (DE) algorithm

The DE algorithm was developed by Reiner Storn
and Kenneth Price in 1996. In the field of hydrologi-
cal modeling, the DE algorithm has been successfully
applied to the optimization of SWAT model parame-
ters (Xuesong Zhang et al., 2008), and the optimiza-
tion of HBV and GR4J model parameters (Piotrowski
et al,, 2017). It was also successfully applied in the
case of multi-objective optimization of in-situ biore-
mediation of groundwater (Kumar et al., 2015), opti-
mization of DISPRIN model parameters (Sulianto et
al., 2018), and optimization of the Modified DISPRIN
model (Sulianto et al., 2020). The analysis in the DE
Algorithm contains 4 (four) components, namely, 1)
initialization, 2) mutation, 3) crossover, and 4) selec-
tion. The relationship between the four components
is shown in Fig. 4.

1 Initialization

In the case of the optimization of the Tank model
parameters, the optimized variable vectors are 16
parameters of the Tank model as described in Fig. 3.
Before initializing the searched vector variable, it is
necessary to determine the lower limit ([b/) and the
upper limit (ub;) of all optimized variables. (b, and
ub,will be used as the first step to generate the val-
ues of the variables being searched for. For gener-
ating the initial value of the 0" generation variable,
the j variable and the / vector can be represented by
the following notation.
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Fig. 4. Differential evolution component relationships (after Sulianto et al., 2020)

Initialisation Mutation

xj,i,O = lb] + randj (, 1) (ub] — lb]) (18)

Random numbers are generated by the rand func-
tion, where the resulting number lies between (0,1).
Index j indicates the variable to j.

2 Mutation

DE will mutate and combine the initial population
to produce a population of size N experimental
vectors. In DE, the mutation is done by adding the
difference of two vectors to the third vector by:

Vig = Xrog + F(Xr1,9 = Xr24) (19)

It can be seen that the difference between two ran-
domly selected vectors needs to be scaled before
being added to the third vector, x,4,. The scale fac-
tor FE(0,1) has a positive real value to control the
population growth rate. The base vector index r,
can be determined in various ways, generally using
a different random method than the index for the
target vector, i. In addition to being different from
each other and different from the indices for the
base vector and target vector, the index of the dif-
ference vectors r, and r, is also selected once per
mutant.

3 Crossover

At this stage, DE crosses each vector x;,, with a
mutant vector v,,, to form the resulting vector, u;,
with the formula.

Vg — jika (rand(0,1) < Cr atau j = jrana)
Uig = Ujig = (20

Xjig — Jjika (rand(0,1) > Cr atau j # jrana)

—_—

Recombination Selection

4 Selection

If the trial vector ui,g has a value of the objective
function that is smaller than the objective function
of the target vector x;,, then u,, will replace the po-
sition of x;, in the population in the next generation.
Otherwise, the target vector will remain in its posi-
tion in the population.

5 Stopping criteria
The iteration process will stop at the specified
stopping criteria, namely the maximum number of

generations given, or if the value of the optimized
variable is constant from generation to generation.

In convergent conditions, the optimum value of the
Tank model parameter has been obtained. Further-
more, by utilizing the simulation equation system
according to equation (1) to equation (10), the out-
put variables of the Tank model can be presented in
the form of numerical or graphic data.

Tank-DE model algorithm

The model from the combination of the equation sys-
tem of the Tank model simulation and the DE algo-
rithm is hereinafter called the Tank-DE model. The
Tank-DE model algorithm developed in this study is
schematically shown in Fig. 5. The application of the
Tank-DE model uses the MATLAB M-FILE program
code which is composed of the main program and 9
sub-programs. The DE algorithm equation system is
the main program, and 9 sub-programs include: 1)
fitness function, 2) calibration process, 3) validation
process, 4) rainfall data training, 5) evapotranspira-
tion data training, 6) discharge data training, 7) rainfall
data testing, 8) evapotranspiration data testing, and 9)
discharge data testing.
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Fig. 5. Tank-DE model algorithm
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- Qm = Discharge model (m.s)
- Comparison of Qyyers and Qyegying
- Model performance indicators.

Result and Discussion

The criteria for the application of the Tank model re-
lated to the length limit of the training data series
involved in the calibration process, as well as the
minimum and maximum values of the parameters
involved in the calibration process were not found in
previous studies. All studies involved the length of
the data series and the range of values of the vari-
ous parameters. The analysis results obtained gen-
erally produce fairly good performance indicators,
although the optimal values of the parameters also
vary. This is caused by the non-linearity and the many

- Qm = Discharge model (m’.s™)
- Comparison of Quuges A0 Quining
- Model performance indicators.

parameters of the Tank model equation system. Tank
model calibration using the Marquard algorithm in-
volved a 10-year training data set (years 1986-1995)
at the Terauchi Watershed in Fukuoda in Japan and
training data for 2 years (years 2002-2003) at the Cir-
iung Watershed in Indonesia, both of which showed
good performance satisfying. Analysis of the Fukuoda
watershed has shown better performance in terms of
X, X%, RE, and RR, although the difference is not signif-
icant, and the optimal value of the parameters shows
a significant difference (Setiawan, 2014). The cali-
bration of the Tank model using GA involved 1-year
training data series (in 1995 and 2000) in Dau Tieng
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River, Vietnam, indicating that the calibration with the
1995 training data set was slightly better, with values
of NSE = 0.80, MSE =0.2, RMSE = 1.39 and MAE = 1.70.
The optimum value of the parameters also resulted in
a significant difference between the two data analyses
(Ngoc et al.,, 2013). The calibration of the Tank model
in the Niulan sub-basin involved a 6-year training data
series (2000-2006), and the Xining River basin for 8
years (2006-2013) resulted in an equivalent NSE val-
ue of 0.75 (Tayyab et al., 2015). These results indicate
that the Tank model can represent the relationship
between rainfall and discharge data series in the daily
period quite well. The optimum value of the parame-
ters of the resulting Tank model is very specific, the
value is very dependent on the dimensions of space
and time.

This study examines the effect of the length of the
training data series on the performance of the Tank
model and the level of consistency of the optimal val-
ues of the resulting parameters. In this regard, the
data analysis uses 5 scenarios. Each scenario uses
the input of a testing data set for 6 years (1 January
2015 - 31 December 2020), and a training data set for
1 year (1 January 2014 - 31 December 2014), 2 years
(1 January 2013 - 31 December 2014), 4 years (1 Jan-
uary 2011 — 31 December 2014), 6 years (1 January
2019 — 31 December 2014), and 8 years (1 January
2007 — 31 December 2014). The characteristics of the
training data set for each scenario are detailed in Ta-
ble 2, and schematically shown in Fig. 3.

Data analysis for each scenario uses the DE algorithm

Table 2. Characteristic data as input model

Training data

Scenario
Period Length
1 1 January 2014 — 31 December 2014 1 year
2 1 January 2013 - 31 December 2014 2 years
3 1 January 2011 - 31 December 2014 4 years
4 1 January 2009 — 31 December 2014 6 years
5 1 January 2007 - 31 December 2014 8 years
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parameter set input with the same values, namely,
the number of generations (N) = 500, the lower bound-
ary of the tank hole coefficient value (ib) = 0.0001, the
upper boundary of the tank hole coefficient value (ub)
= 1.00, the lower boundary of the hole height and the
initial water level in the tank (lb) = 0.0001, and the up-
per boundary of the hole height and initial water level
in the tank (ub/) = 250. The search space represented
by the values of [b; and ub; is determined based on
references from several previous papers and the op-
timum conditions obtained from several experiments
that were carried out in this case study. The results
of running programs from the 5 scenarios are briefly
presented in Figs. 6-11, Table 3, and Table 4.

Fig. 6 shows the progress of achieving the best fit-
ness value from generation to generation for all sce-
narios. In general, it shows that the developed model
is quite consistent and has succeeded in finding the
optimal conditions according to the formulated ob-
jective function. In optimal conditions, the best fit-
ness in the 500" iteration shows a difference in the
values of each scenario. It appears that the longer
the training data set, the smaller the best fitness
value tends to be, although the difference is not very
significant. This is due to the difference in the statis-
tical characteristics of the training data sets, which is
not too conspicuous. Scenario-1 as a representation
of a short training data series produces the largest
RMSE value, which is 0.173, and scenario-b as a rep-
resentation of a long training data series produces
the smallest RMSE value, which is 0.080.

Testing data

Data points Period Length Data points
365
735 1 January
1465 Sgl :r;s;r 6 years 2194
2195 2020
2925
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Fig. 6. The progress of the best fitness value in the iteration process
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Under optimal conditions, the Tank model parame-
ters values are generated as shown in Figs. 7-8. Fig.
7 shows the comparison of the parameter values for
the height of the tank hole and the initial water lev-
el in the tank in each scenario. Parameters HA2 and
SAO showed significant differences in values, HA1 pa-
rameters were significantly different, and parameters
HB1, SBO, SCO, SDO were slightly different and even
tended to have the same value for each scenario. The
optimum value of the parameters HA2 and SAQ was
more different than the other parameters, due to the
non-linearity factor of the Tank model equation sys-
tem. The variable values of the HA2 and SAQ param-
eters indicate that these parameters are not sensi-
tive enough, meaning that any value does not have a
major effect on the resulting RMSE value. Of course,
this only applies to this case study. The value of the
Tank model parameters is uncertain and the value
will always be different for each case, depending on
the physical properties of the watershed and the char-
acteristics of the relationship between the rain data
series and the discharge data series involved in the
calibration process (Lee and Singh, 1999).

Fig. 8 shows that the outlet tank coefficient values
in general are not significantly different, except for
the CAO and CBO parameters. This indicates that the

smaller the difference in values, the higher the sen-
sitivity of the parameter to the model's performance,
and vice versa. Thus, it can be identified that the al-
titude parameters HB1, HC1, SBO, SCO, SDO are very
sensitive, HAT is quite sensitive, and HA2, SAO are not
sensitive. The outlet tank coefficient parameters CAO,
CBO, CB1 are not sensitive, and CA1, CA2, CCO, CCT,
CD are very sensitive. Identification of the sensitivity
level of this parameter will be useful in applying the
Tank-DE model, especially in determining the feasi-
bility value limit of the Tank model parameters.

Furthermore, by using the input set of optimum val-
ues of the Tank model parameters and the hydro cli-
matology training data set, the output of the discharge
model fluctuation is obtained. Fig. 9 shows the com-
parison of the discharge model curve and the training
discharge data curve. Fig. 10 shows the comparison of
the discharge model curve with the testing discharge
data curve. Fig. 9 shows almost the same trend be-
tween the training discharge curve and the discharge
model curve from all scenarios. This shows that the
model being built is quite consistent. The difference
in the model discharge value in each scenario is only
influenced by the number of data points and the con-
sistency of the relationship between climate data and
training discharge data. Of course, if all data points
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Fig. 7. Comparison of the optimum value of the the initial water level in the tanks and height of outlet tank
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HC1 SA 0 SBO SCO SDO
scenario-1 54.30 250.00 220.70 0.011 250.00 250.00 249.99 24643
scenario-2  31.38 201.12 250.00 0.001 75.78 250.00 250.00 250.00
scenario-3 0.00 127.61 250.00 0.001 248.04 250.00 250.00 250.00
scenario-4 2.54 250.00 237.83 0.001 215.11 250.00 250.00 249.89
scenario-5 11.86 122.06 0.001 0.001 236.56 250.00 250.00 250.00
Fig. 8. Comparison of the optimum value of the outlet tank coefficient in the tanks
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scenario-1 0.045 0.014 0.000 0.515 0.001 0.00001 0.006 0.020
scenario-2 0.053 0.017 0.000 0.327 0.036 0.00001 0.006 0.009
scenario-3 0.095 0.024 0.000 0.025 0.020 0.00001 0.007 0.018
scenario-4 0.043 0.008 0.003 0.026 0.042 0.00001 0.007 0.007
scenario-3 0.100 0.015 0.000 0.037 0.007 0.00001 0.006 0.015

had a consistent correlation, the discharge curves of
the model would coincide with each other. A compari-
son of model performance at the calibration stage for
each scenario is shown in Table 3. The value of the
model performance indicators shows various phe-
nomena. RMSE tends to decrease with the length of
the training data series involved in the calibration pro-
cess. In scenario-4 and scenario-5, the RMSE value

appears smaller, as well as the NSE indicator. Howev-
er, the indicators X. X%, RE, and RR do not show a cer-
tain trend. Their values tend to fluctuate with not too
large a deviation. Based on the NSE values which are
all greater than 0.8, it can be concluded that qualita-
tively the calibration process in all scenarios showed
excellent performance, although quantitatively it ap-
pears that scenario-5 gives the most accurate results.
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Table 3. Comparison of model performance indicator values at the calibration stage for all scenarios

Callibration Stage

indicators Symbel scenario-1 scenario-2 scenario-3 scenario-4 scenario-5
Root mean square error RMSE 0.173 0.134 0.116 0.077 0.083
Mean absolute error MAE 2.495 2.790 3.662 2.874 3.594
Standard X X 0.497 0.506 0.690 0.501 0.631
Square standard X X2 0.492 0.445 0.756 0.386 0.605
Relative error RE 0.104 0.095 0.135 0.090 0.115
Square relative error RR 0.026 0.017 0.033 0.013 0.022
Nash-Sutcliffe efficiency NSE 0.908 0.862 0.830 0.888 0.834

Fig. 9. Comparison of the model discharge fluctuation curve and the training data curve of all scenarios
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Fig. 10 also indicates that qualitatively the discharge
model from all scenarios shows the same fluctuation
trend. The discharge model curves from all scenar-
ios with the discharge testing curves generally show
a pretty good trend, except in the 1250" period to the
1700" period. In this period, it appears that the model
output tends to be overestimated, although the devi-
ation is not too large. This difference may be caused
by an inconsistent correlation between rainfall data and
discharge data. The NSE value generated in all scenar-
ios is more than 0.75 indicating the validation process
is also quite successful. Quantitatively, scenario-5 pro-
duces the best performance compared with other sce-
narios. This is indicated by the value of the RMSE, MAE,
X, X2, RE, and RR indicators, which tend to be the small-
est, although the difference in values is not significant.

= Data Training

Fig. 11 presents the comparison of the values of the
determination coefficient (r?) from the relationship
between the discharge data and the discharge model
resulting from the calibration process and the vali-
dation process of all scenarios. In general, the cali-
bration process shows better performance than the
validation process, except for scenario-5. Scenario-1
shows the biggest difference in the value of r? in the
calibration and validation processes. This condition
indicates that the use of a minimum training data
set (1 year) will have a risk of biasing the discharge
predicted by the model. The use of a relatively long
training data series (> 1 year) can reduce discharge
prediction errors because the calibration process has
provided training for models with various possible re-
lationships between rain and discharge.
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Table 4. Comparison of model performance indicator values at the validation stage for all scenarios
Indicators Symbol el e
scenario-1 scenario-2 scenario-3 scenario-4 scenario-5

Root mean square error RMSE 0.099 0.099 0.112 0.094 0.087
Mean absolute error MAE 3.611 3.562 4.260 3.373 3.185
Standard X X 0.656 0.640 0.740 0.622 0.572
Square standard X X? 0.705 0.662 0.782 0.664 0.515
Relative error RE 0.125 0.121 0.134 0.121 0.108
Square relative error RR 0.030 0.026 0.025 0.030 0.020
Nash-Sutcliffe efficiency NSE 0.810 0.810 0.754 0.829 0.853

Fig. 10. Comparison of model discharge curves and testing data for all scenarios
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Conclusion

The Tank-DE model developed in this research can
work very well in presenting the relationship of cli-
mate data series to a daily period discharge data se-
ries. At the calibration stage, the process of finding
the best fitness value can run effectively. The results
of the analysis of 5 scenarios indicate that the longer
training data series involved in the calibration process
tends to produce a smaller best fitness value, meaning
that the longer training data series tends to be more
accurate in terms of RMSE. In scenario-1, the value
of r? at the validation stage decreased quite sharply,
although r? from the calibration process showed the
highest value. This indicates that the use of a short
training data series (<= 1 year) will have a risk of bi-
asing the discharge predicted by the model. The use
of relatively long training data series (> 1 year) can
reduce discharge prediction errors because the cali-
bration process has provided a wider training space.

The results of the analysis of the 5 scenarios show
the equivalent RMSE values, but the optimum values
of the resulting Tank model parameters are inconsist-
ent. The optimum value of the parameters HA2 and
SAQ is more different than the other parameters, due
to the non-linearity factor of the Tank model equation
system. The variable values of the HA2 and SAO pa-
rameters indicate that these parameters are not sen-
sitive enough, meaning that any value does not have a
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