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Knowing the concentration of elements in children’s classroom dust and the associated ecological and health risks is 
essential in preventing and controlling possible elemental poisoning. Dust samples were collected from 37 nursery and 
kindergarten classrooms across three local government areas in Abeokuta, Nigeria, and assessed for elemental con-
centrations using X-ray fluorescence (XRF) spectrophotometry. The hazard and the cancer risk indexes were estimated 
using the geo-accumulation index (Igeo) and health risks posed to children. The highest mean concentrations (mg/kg) of 
Ca, Fe, K, and Ti ranged between 4034.22–15995.09, 1758.95–2409.62, 5146.66–8996.75, and 730.96–1140.38, respec-
tively. About 33.33% of the monitored metals displayed Igeo values within the moderately polluted and extremely polluted 
categories in Abeokuta South and North. All the monitored locations were strongly polluted with Ca, Fe, K and Ti, includ-
ing arsenic at Abeokuta South. Metals with high pollution (Cf > 6) were Ca, Fe, Co, As, K, Ti and Ge in Abeokuta South. 
Ca, Fe, Co, As, K, Sc, Ti and Ge in Abeokuta North; and Ca, Fe, As, K, Sc, Ti and Ge at Odeda. Arsenic levels were 128.42 
(considerable), 2934.27 (very high) and 179.33 (high) for the ecological risk factors. Dust samples for Abeokuta South and 
North posed the least and greatest ecological risks, respectively, and the risk potentials of arsenic across all the locations 
were in the ecologically risky ranges. However, hazard indexes < 1 were recorded across the monitored sites, indicating 
no immediate non-carcinogenic health risks, while cancer risks for Co, Ni, As, and Cr were < 1.0E−04, respectively, de-
picting no significant carcinogenic risk. This study concluded that the levels of elements monitored do not pose any health 
risk to the children but are of concern to the ecosystem. Therefore, policies on locating schools in areas with minimum 
anthropogenic pollution should be formulated and continuous cleaning of classroom surfaces should be encouraged.
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Introduction
Profiling the levels of elements, especially metals, in 
the natural environment are of significant concern due 
to their non-biodegradability and toxic health effects. 
The principal and natural sources of metals in the en-
vironment are rocks and soils through pedogenesis 
(Fairbrother et al., 2007; Alloway, 2013). The air-driv-
en specks of dust may be deposited on indoor surfaces 
(Darus et al., 2012) through impaction, sedimentation, 
and interception (Poggio et al., 2009; Addo et al., 2012). 
The composition of dust is complex, including organic, 
inorganic, and microbial entities. The different constitu-
ents are released into the environment and transport-
ed away from production sources through wind action 
(Kurt-Karakus, 2012). With recent environmental at-
tention, soils and dust have become essential indica-
tors for diagnosing environmental pollution and human 
health impacts (Davydova, 2005).

Each year, 6.7 million premature deaths are attributed 
to the consequences of ambient and home air pollu-
tion. Living with chronic obstructive pulmonary disease 
(COPD), lung cancer, ischemic heart disease, stroke, 
and other non-communicable diseases is worsened 
by indoor air pollution. Reduced ventilation exacer-
bates the global issue of poor indoor air quality. It is 
important to consider how well a ventilation system can 
modify the air in each area and get rid of any indoor 
pollution that is already present (Hormigos-Jimenez et 
al., 2018). The airflow pattern, which depicts how the 
air flows inside the indoor area during ventilation, has 
an impact on how the air is distributed, and pressure 
gradients (either naturally occurring or artificially cre-
ated) have an impact as well (Kwon et al., 2011). Var-
ious health problems, including cancer, heart disease, 
cognitive deficiencies, and respiratory illnesses, can be 
brought on by both short- and long-term exposure to 
indoor air pollution. A single exposure to a pollutant or 
repeated exposure may cause some health problems 
to manifest quickly. Vulnerable populations, including 
children, teenagers, and the elderly, might suffer harm 
from poor indoor air quality (Tsakas et al., 2011; Cinci-
nelli and Martellini, 2017).

Humans are exposed to metals from metal-ladened 
dust or particle by-products from industrial, munici-
pal, commercial and agricultural activities through in-
halation (Popoola et al., 2012), ingestion (Morais et al., 

2012) by intentional or unintentional consumption of 
poorly washed raw fruits and vegetables, and dermal 
by absorption through the skin pores (Han et al., 2017). 
Whichever exposure route, once metals gain access to 
the body system, they get distributed to various organs 
like the kidney, liver, heart, brain, and bones (Morais et 
al., 2012). The inhalation of toxic elements through the 
numerous tiny air sacs allows deep transport into the 
lungs and the bloodstream, initiating, aggravating, and 
becoming co-factors of diseases of the internal organs 
(Tong and Lam, 2000; Gbadebo and Bankole, 2007).

Although living organisms require different measures 
of metals (Kabata-Pendias, 2011), the toxicity and re-
sultant health impacts of metals depend on many fac-
tors, such as the age of the exposed person, type of 
metal, route of exposure, and concentration or dose 
and exposure duration. Some metals have already been 
known and classified as mutagens and carcinogens 
with various negative impacts on internal organs (Olu-
jimi et al., 2015). For instance, Borgman et al. (2005) 
and Pandey and Madhuri (2014) have reported that Cd, 
Hg, Pb, Cr and As are highly poisonous, while Hu et al. 
(2017) reiterate the classification of As, Cd, Cr and Ni as 
being Class B1 carcinogens. Similarly, Cd accumulation 
may affect children and adults (Schoeters et al., 2006) 
and possess a mechanism to induce cancer (Joseph, 
2009). Cu and Fe are referred to as essential elements, 
but the harmful impacts of high doses and long-term 
exposure have been reported by Lambert et al. (2000) 
and ATSDR (2004).

People in Nigeria and other West African countries are 
exposed to metals, especially having contact with dust 
from November to March each year. It is already report-
ed that dust emanates from the dynamic interaction of 
wind and atmospherically suspended particles often 
disturbed by wind and human activities (Dimari et al., 
2008). In addition, geographical locations have proved 
to correlate with heavy metals in dust samples (Nk-
ansah et al., 2015). Anthropogenic activities will affect 
the soil and dust of schools in the surrounding areas. 
For instance, the buildup of trace metals in x10-waste 
recycling facilities can considerably increase the levels 
in soil and dust, which could severely influence human 
health, especially in vulnerable groups like children and 
pregnant women (Yekeen et al., 2016).
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People spend most of their time indoors, such as in of-
fices, schools, and homes (Jamaludin et al., 2017). Ade-
bamowo et al. (2006) revealed the substantial levels of Pb 
in house paints manufactured and sold in Nigeria. Chil-
dren are most vulnerable because they readily absorb 
metals due to the development of their body systems 
(Aguilera et al., 2010), low resilience to poisons and hand-
to-mouth habits (Acosta et al., 2009), geophagia and dust 
inhalation (Popoola et al., 2012). The study of dust and 
soils in primary schools in Lagos (Nigeria) by Durowoju 
et al. (2018) indicated that inhalation is the second-larg-
est carcinogenic risk pathway of dirt and dust after inges-
tion. Iskandar et al. (2014) showed a high concentration 
of Pb in the saliva of Malaysian primary school pupils. 
Similarly, a Pb concentration of > 10 μg/dL was recorded 
in about 70% of children between 6 and 35 months old 
(Jusko et al., 2008). Meanwhile, urine samples of school-
children in Dares Salaam (Tanzania) showed higher Pb 
and Cu levels in children whose schools are in industrial 
areas. In contrast, Zn and Fe showed higher concentra-
tions in children whose schools are in non-industrial ar-
eas (Mahugija et al., 2018).

Chronic low-level exposure to heavy metals has been 
linked to several adverse effects, including the deple-
tion of iron and vitamin C reserves, anaemia, immu-
nosuppression, promotion of kidney impairment and 
neurotoxicity, vascular problems, and epidermal hy-
perpigmentation and keratosis (Yu et al., 2006; Navar-
ro and Rohan, 2007; Mishra, 2009). Due to the severity, 
irreversibility, and protracted time needed to develop 
clinical symptoms, these manifestations harm human 
health. Furthermore, exposure to heavy metals, includ-
ing Cd, As, and Pb, can cause carcinogenesis in many 
organs, including the skin, liver, lungs, and bladder. Ac-
cording to several studies (Xu et al., 2012; Huo et al., 
2014; Liu et al., 2014; Xu et al., 2015; Zeng et al., 2016), 
trace metal contaminants like cadmium (Cd), chro-
mium (Cr), and lead (Pb) have cumulative effects that 
result in renal illness, cancer, and many other harmful 
health impacts, including growth retardation in children.

Most studies on heavy metals have focused on urban 
roadside dust, elemental composition and source ap-
portionment (Popoola et al., 2012, Addo et al., 2012); 
there are few works on metals in the dust from class-
room facilities for toddlers in Nigeria, especially in Ogun 
State. The study by Olujimi et al. (2015) seems to be the 
only visible article available. Previous works focused on 
a limited number of metals, Pb, Cr, Cd and Mn. Howev-

er, this study is different because it focuses on pupils 
in nursery and kindergarten classes of vulnerable and 
susceptible age groups. They cannot moderate what 
they ingest, inhale, and absorb through their skin. 

Metals in the environment may get introduced into 
classrooms through wind action from dust on footpaths 
which kids walk to school and play around within the 
school compound/area (Kurt-Karakus, 2012). Thus, 
this study assessed the pollution levels in classroom 
dust through ecological risk indexes (geo-accumulation 
and pollution load index) and health risks assessment 
(carcinogenic and non-carcinogenic) to children through 
the three exposure routes. Thus, the objectives of this 
study were to (1) assess the level of contamination of 
classroom dust using pollution indexes, (2) assess the 
health risks through the exposure pathways and (3) 
identify which of the profiled elements poses the great-
est threat to human health and ecosystem. 

Methods
Study area
Abeokuta is the capital city of Ogun State, a fast-grow-
ing city and economy due to its proximity to Lagos, the 
business hub of Nigeria. The city is endowed with natu-
ral rocks, making quarry industries highly lucrative and 
increasing heavy-duty vehicle inflow and outflow. The 
state also acts as a link between Lagos and other states 
of the country. Abeokuta is the largest city in Ogun State 
and lies within latitudes 6° N to 8° N and longitudes 2° 
30´ E and 5° E in southwestern Nigeria (Fig. 1). The city 
has many emerging industries, commercial centres and 
schools of various levels of learning, hospitals and res-
idential buildings. For road accessibility, most schools 
are situated very close to central and access roads.

Sample collection and processing
Thirty-seven (37) schools located along intracity and 
linkage access roads cutting through Abeokuta South, 
Abeokuta North, and Odeda Local governments of Ogun 
State were sampled, representing locations 1, 2, … up 
to 37, respectively. These schools were selected based 
on the consent of the school’s head to participate in the 
research. In each selected school, dust samples were 
swept from floors, windows, shelves, and other teaching 
materials in the nursery and kindergarten classrooms 
using a small plastic brush (20 cm long) and a small 
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stainless steel (50 mL size) scoop. Most of the sampled 
schools used natural ventilation by opening windows and 
doors. Few ones that had ceiling fans could not use them 
because of lack of electricity. The dust samples collected 
from classrooms in each school were bulked to repre-
sent each school and labelled. The samples were col-
lected between November 2019 and January 2020. Initial 
sieving with a 2.0 mm sized sieve was done to remove 
large particles, then air dried and then sieved again with 
a 0.5 mm sized sieve; subsequently pulverised before 
making a 13 mm pellet from the bulk.

X-ray fluorescence spectroscopy (XRF) is a simple, fast, 
safe, non-destructive analytical technique. Therefore, by 
avoiding the potential for inaccuracies caused by incom-
plete dissolution and large dilutions, the complete anal-
ysis by XRF helps to ensure the accuracy and reliability of 
results. Heavy metal contents of dust samples were anal-
ysed at the Center for Energy Research and Development 
(CERD) Obafemi Awolowo University, Nigeria, using a 
portable AMPTEK Energy Dispersive Fluorescence (EDX-

RF) obtained from the USA. The EDXRF instrumentation 
includes the X-ray source, sample holder, detector, current 
and voltage amplifier, read-out computer and multi-chan-
nel analyser (MCA). A 300 mg finely pulverised sample 
was pressed into pellets using the Calver® model manual 
pelletising machine made in the USA. Each sample was 
inserted into the sample holder of the XRF system for si-
multaneous irradiation and spectrum acquisition. The irra-
diation was done with an X-ray fluorescence spectrometer 
equipped with a silver (Ag) anode at a voltage of 25kV and 
a current of 50 μA for 1000 counts in an external cham-
ber setup. The equipment model is PX 2CR Power Supply, 
Amplifier for XR-100CR Si-pin Detector and pocket MCA 
8000A. The solid-state Si-pin detector system detected 
characteristic X-rays from each sample, and spectrum 
acquisition was done using an Amptek model multi-chan-
nel analyser for display in the read-out system. Elemental 
analysis was done using the thick target mode of the Inter-
national Atomic Energy Agency (IAEA) software (Quantita-
tive Analysis of X-ray Iterative Least (Q-Axil) square.

Fig. 1. Map of Ogun State showing the locations of the schools within the study
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Quality control
Before the analysis, the instrument calibration was 
checked with certified reference Soil-7 standard (pur-
chased from NIST, Gaithersburg, USA). The instrument 
reproducibility was checked using in-house prepared 
standards of Ca, Fe, Pb, Zr, Sr, and K, while the results 
are presented in Table 1.

Table 1. Elemental concentrations of certified reference materials 
Soil-7 standard

Element Certified Values (ppm) Experimental Values (ppm)

Ca 163000 162328

Fe 25700 25670

Pb 60 56

Zr 185 187

Sr 108 107

K 12100 12130

Note: Wt %=ppm/10000

Pollution assessment indexes
Literature has reported several estimation parameters 
in assessing ecological risks consequent to heavy met-
als in dust, soils, and sediments. Hence, we character-
ised the ecological risks of heavy metals in the class-
room dust samples using geoaccumulation (Igeo) and 
ecological risk indexes (Eri).

Geoaccumulation index (Igeo)
The geo-accumulation index (Igeo) evaluates the degree 
of metal pollution in dust samples. It is done by balanc-
ing the estimated metal levels (Cn) with background/
reference concentrations (Bn) (Hakanson, 1980; Abrahim 
and Parker, 2008; Ogunkunle and Fatoba, 2014) with the 
use of a correction factor (a constant – 1.5) to minimise 
the effects of possible lithogenic variations (Gupta et al., 
2014; Olujimi et al., 2015; Ogundele et al., 2019).
 

(1)

Where: Cn – estimated metal levels; Bn – background/
reference concentrations.

The Igeo values are interpreted as follows:

Igeo < 0: unpolluted;

0 < Igeo< 1: unpolluted to moderately polluted;

1 < Igeo < 2: moderately polluted;

2 < Igeo < 3: moderately to strongly polluted;

3 < Igeo < 4: strongly polluted;

4 < Igeo < 5: strongly to extremely polluted;

Igeo > 5: extremely polluted (Ogundele et al., 2019).

Ecological risk index
The potential of heavy metals within the dust samples 
to elicit some ecological effects was assessed using the 
ecological risk index (Eri). Eri measures the potential eco-
logical toxicity of each heavy metal based on its relative 
toxicity, where Cn is the heavy metal concentration in dust 
samples, and Bn is the concentration of the heavy metal 
in the reference sample. Eri measures the potential risk 
of the studied heavy metals within the dust sample (Soli-
man et al., 2015; Olatunde et al., 2020). Five metals were 
included in estimating Eri, and the toxic response factors 
(TRF) for As, Cr, Cu, Ni and Zn are given as 10, 2, 5, 5 and 
1, respectively (Wan et al., 2016; Tepanosyan et al., 2018). 
The degree of ecological risk potential posed by heavy 
metals was assessed as follows:

Eri < 40: low risk;

40 < Eri ≤ 80: moderate risk;

80 < Eri ≤160; considerable risk;

160 < Eri ≤ 320: high risk;

 Eri > 320: very high risk.

An ERi less than 150 indicates a low potential ecolog-
ical risk from the studied heavy metals, a moderate 
risk when 150 < ERi <300, a considerable risk when 
300 < ERi < 600 and a high risk when ERi > 600 (Tepano-
syan et al., 2018).
 

(2a)

Where: Cn – the estimated metal levels; Bn – background/
reference concentrations; TRF – toxic response factor.
 

(2b)

Where: ERi is determined as the summation of all risk 
factors for metals in soil; Eri is the individual potential 
ecological risk factor.
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Health risks assessments
The hazard and cancer risk indexes indicated the health 
risk posed by the heavy metals in the dust samples.

Non-carcinogenic risk assessment 
The non-carcinogenic health risks are based on cal-
culating the intake of metals in the contaminated dust 
through the three possible routes (inhalation, ingestion 
and absorption) in quantity capable of posing adverse 
health effects, especially chronic nature, to the children.

The first variable of concern is the exposure-point con-
centration (C95%UCL) which represents the estimate of 
reasonable maximum exposure and is estimated as the 
upper limit of the 95% confidence limit for the mean 
values of each monitored element. The exposure point 
was calculated using Equation 3, where X refers to the 
arithmetic mean of the log-transformed data and S is 
the standard deviation of the log-transformed data. 
Also, H is the value from the H-statistic table (Gilbert, 
1987), and n is the number of samples (Olujimi et al., 
2015). It subsequently represents the C used to calcu-
late the other non-carcinogenic risk variables.
 

(3)

In addition, the average daily dose (ADD) was calculat-
ed using Equations 4a, b, and c for ingestion, inhalation, 
and dermal routes, respectively. ADD (mg/kg/day) is the 
risk dosage based on the measured concentration of el-
ements computed in mg/kg/day for the children. All the 
in-built parameters are described and referenced.

(4a)

(4b)

(4c)

By dividing the average daily dose (ADD) of each heavy 
metal by its unique reference dose/reference concen-
tration (RfD/RfC) for each of the exposure routes, we 
were able to calculate the hazard quotients (HQ1, 2, and 

3) for the heavy metals monitored for ingestion, inha-
lation, and dermal risks, respectively. The embedded 
functions used for calculating the HQ (USEPA, 2011a; 
Olujimi et al., 2015) are described in Table 2.

(5a)

(5b)

(5c)

The hazard index is the final value for the non-carcino-
genic risk assessment. The summation of the individual 
HQ for each metal hazard quotient gives the HI. 

(6)

HI > 1 is above the acceptable limit and will produce 
non-carcinogenic health effects, whereas HI < 1 is within 
the acceptable limit. Therefore, the non-carcinogenic risk 
scale is classified as negligible (risk level 1; HI ≤ 0.1), low 
risk (risk level 2; HI ≥ 0.1 < 1), medium risk (risk level 3; HI 
≥ 1 < 4) and high risk (risk level 4; HI > 4). The possibility 
of having long-term health hazards tends to increase as 
the HI value spikes (Wang, 2012; Ogundele et al., 2019).

Cancer risk (CR) was quantified and characterised sepa-
rately from non-carcinogenic effect (HQ) using Equation 
7. A person’s cancer risk is the likelihood of developing 
cancer due to lifetime exposure to a potentially carcino-
genic hazard (Olujimi et al., 2015). USEPA categorises 
the likelihood of carcinogenic risks as < 10−4, 10−4–10−6, 
and > 10−6 to be negligible, acceptable, sufficiently large, 
and necessitating remediation, respectively (Gu and 
Gao 2018; Ogundele et al., 2019). However, the generally 
accepted value is ≤ 1 × 10−6, which means that, on av-
erage, the chance is that approximately 1 per 1 000 000 
will develop cancer because of exposure to the carcino-
gen (Lim et al., 2008; Adamu et al., 2014). 

(7)
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Results and Discussion
Heavy metal concentrations across the locations
Table 3 presents in mg/kg the mean, minimum, max-
imum, standard deviations, and analysis of variance of 
means at P < 0.05. The distribution patterns of the mon-
itored metals are Ca > K > Fe > Ti > Mn > Co > Sc > V > 
Cr > Ni > Zn > Se > Ge > As > Br > Rb > Cu > Ga > Sr at 
Abeokuta South; K > Ca > Fe > Ti > Mn > V > Sc > Ni > 
As > Cr > Se > Zn > Co > Ge > Br > Rb > Cu > Ga > Sr at 
Abeokuta North; and Ca > K > Fe > Ti > Sc > Mn > V > 
Cr > Zn > Ni > Co > Se > As > Ge > Rb > Br > Cu > Ga > 
Sr at Odeda. The peak metal levels at Abeokuta South, 
Abeokuta North and Odeda were 21.05%, 36.84% and 
42% of the metals, respectively. The ANOVA revealed 
significant variations among the mean values of Ca, Co, 
Ni, Zn, As, and K across the locations. About 31.58% of 
the metals (Co, As, Cr, Sc, Ge and Se) seem to be from 
anthropogenic sources because the observed levels are 
higher than the ones from natural soils and crust.

The average Ca concentration ranged from 4034.22 
mg/kg at Abeokuta North to 15995.09 mg/kg at Odeda. 
The highest mean (268.28 mg/kg) recorded in Mn was 
at Abeokuta South, double the levels recorded at both 
Abeokuta North and Odeda. However, there appears to 
be no significant difference in the Mn levels monitored 
across the locations. Fe concentration ranged from 
1758.95 mg/kg at Abeokuta North to 2409.62 mg/kg 
at Odeda, with no statistically significant difference. Co 
ranged from 27.13 mg/kg at Abeokuta North to 153.90 
mg/kg at Abeokuta South. The highest concentration 
(49.30 mg/kg) of nickel was at Abeokuta North, higher 
than the earth soil (40 mg/kg) and lower than the level 
in the earth crust (58 mg/kg).

This study’s highest Cu concentration (12.50 mg/kg) 
was at Abeokuta North, while the highest mean level 
of Zn (42.91 mg/kg) was observed at Odeda. The ob-
served As concentrations ranged between 14.13 mg/

Table 2. Exposure parameters used for the health risks assessment through different exposure pathways

Parameters Symbol Value References

Heavy metal concentration C95%UCL
The upper limit of the 95%  confidence limit of the mean 

concentration of each metal in this study (mg/kg)
Olujimi et al. (2015)

Ingestion rate IngR 200 mg USEPA (2011a)

Exposure duration ED 6 years WHO (2015)

Exposure frequency EF 180 days/year Li et al. (2013)

Bodyweight BW 15 kg USEPA (2001); WHO (2015)

Average time for non-carcinogenic AT ED (6) x 365 days= 2190 USEPA (2001)

Conversion factor CF 1·10-6 kg/mg Zheng et al. (2015) 

The surface area of the skin SA 2800 cm2 Hu et al. (2012)

Skin adherence factor SL 0.07 mg/cm2/day USEPA (2001)

Dermal absorption factor ABS 0.001 Du et al. (2013)

Inhalation rate InhR 7.6 mg/kg/day children, Olujimi et al. (2015)

Particle emission factor PEF 1.36·10-9 m3/kg USEPA (2001)

Reference dose  

Reference concentration

Oral slope factor

Inhalation unit risk

RfD

RfC

SFo

IUR

mg/kg/day

mg/m3

(mg/kg/day)

μg/m3

USEPA (2001)

USEPA (2011b)

USEPA (2011b)

USEPA (2011b)
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kg to 40.35 mg/kg, higher than the background aver-
age for earth crust and soils. The highest As level was 
observed at Abeokuta North.

The highest K level (8996.75 mg/kg) was at Odeda, 
lower than the background average for the earth’s crust 
and soil. The mean concentrations of Cr ranged from 
36.92 mg/kg to 53.55 mg/kg, with the highest at Odeda. 
Cr is widely distributed across the study locations be-
cause there is no significant difference higher than the 
background average for the earth’s crust and soil.

Scandium (Sc) ranged within 64.18–180.89 mg/kg, 
6–8 times higher than the background average for the 
earth’s crust and soil values. Similarly, the titanium 
(Ti) level was highest (1140.38 mg/kg) at Odeda, and 
lowest (730.96 mg/kg) at Abeokuta North, and these 

values are lower than the background average for the 
earth’s crust and soil levels. The highest vanadium (V) 
level (85.39 mg/kg) was at Abeokuta North schools. 
The highest (24.75 mg/kg) was at Abeokuta North, and 
the least (14.44 mg/kg) was at Odeda. This study re-
cords the highest Se (36.37 mg/kg) across the Abeoku-
ta North locations. Br levels ranged from 9.92 mg/kg at 
Odeda to 14.88 mg/kg at Abeokuta North.

For rubidium, the mean Rb ranged from 11.79 mg/kg 
to 14.34 mg/kg at Abeokuta South and Odeda, respec-
tively. These values are lower than the expected back-
ground levels and within the daily Rb intake of 1 and 5 
mg (Lenntech, 2017). For strontium, the highest Sr level 
(7.12 mg/kg) was at Abeokuta South locations, about 
48 times lower than the background levels.

Table 3. Mean values for each metal in dust samples for each sampled location (mg/kg)

Elements
Abeokuta South (n =  23) Abeokuta North (n = 8) Odeda (n = 6)

Mean Min Max Stddev Mean Min Max Stddev Mean Min Max Stddev

Ca 9140.70ab 961.16 48720 11729.84 4034.22a 1.21 9351.43 18621.25 15995.09c 4973.3 37490 13520.9

Mn 268.28 18.26 4292 877.57 96.84 65.27 155.96 386.1 116.01 65.54 237.94 62.8

Fe 1887.73 89.29 4543.94 888.66 1758.95 1020.95 3572.31 6916.95 2409.62 1631.3 3230.74 641.66

Co 153.90a 15.17 539.23 134.35 27.13b 10.7 70.91 106.09 30.82b 24.64 44.12 6.93

Ni 31.00a 11.14 59.32 13.37 49.30b 32.67 100.73 192.22 32.29a 17.63 45.87 9.84

Cu 10.11 3.12 46.98 10.53 12.5 4.64 30.13 49.35 9.69 5.36 13.72 3.59

Zn 22.27a 7.78 49.66 11.41 36.31a 16.61 82.38 142.98 42.91b 16.41 115.57 36.31

As 14.13a 1.75 69.24 16.57 40.35b 1.84 108.98 163.39 19.73a 3.78 37.24 13.62

K 5608.49a 1393.96 13820 3124.1 5146.66a 3232.66 9211.2 20399.36 8996.75b 4974 16910 4096.16

Cr 39.88 9.27 223.83 42.62 36.92 25.35 74.53 143.83 53.55 21.1 116.97 39.45

Sc 128.75 0 1429.77 308.66 64.18 31.79 164.44 278.06 180.89 54.05 530.7 180.9

Ti 865.64 60.95 2405.17 655.94 730.96 270.72 1431.81 2942.5 1140.38 592.22 1723.16 444.63

V 67.4 9.27 223.83 43.4 85.39 56.83 152.71 337.34 68.21 40.85 109.67 24.92

Ga 8.65 0 48.95 10.51 11.23 5.83 25.29 43.98 7.47 5.7 9.82 1.8

Ge 15.84 1.96 69.24 14.17 24.75 12.87 57.02 96.69 14.44 8.66 22.25 5.12

Se 21.22 4.69 53.93 13.05 36.37 20.6 103.47 138.52 23.1 10.59 30.86 7.19

Br 12.01 3.43 43.03 8.63 14.88 3.03 41.95 59.03 9.92 6.09 13.75 2.66

Rb 11.79 0 29.98 10.23 13.25 4.73 50.08 75.09 14.34 0 36.82 13.66

Sr 7.12 0 33.82 10.7 0 0 0 0 6.39 0 38.34 15.65

Same letters along the rows mean no significant different at P > 0.05,
Duncan Multiple Range Test
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Table 4. Pollution assessments (Geoaccumulation and Ecological risk indexes)

Metals Igeo1 Igeo2 Igeo3 TRF Eri1 Eri2 Eri3

Ca 10.31 12.13 11.12     

Mn −2.79 −1.26 −4     

Fe 7.65 10.55 8     

Co 2.06 2.55 −0.26     

Ni −2.07 1.6 −2.01 5 1.79 22.75 1.86

Cu −3.23 0.07 −3.29 5 0.8 7.89 0.77

Zn −2.39 1.31 −1.45 1 0.29 3.72 0.55

As 3.1 7.61 3.58 10 128.4 2934.27 179.33

K 11.46 14.33 12.14     

Cr −2.51 0.38 −2.09 2 0.53 3.9 0.71

Sc 1.74 3.74 2.23     

Ti 10.23 12.99 10.63     

V −2.09 1.25 −2.08     

Ga −1.62 1.76 −1.83     

Ge 2.72 6.37 2.59     

Se −1.82 1.96 −1.7     

Rb −2.66 1.02 −2.38     

Sr −5.88 0 −6.04     

ERi     131.8 2972.54 183.22

Ca, Fe, K, Na, and Ti have been similarly identified in 
classroom dust samples as dominant elements in 
previous studies (Gemenetzis et al., 2006; Tran et al., 
2012; Olujimi et al., 2015). It has been reported that high 
concentrations of Ca in classroom dust are associated 
with chalk usage (Fromme et al., 2008; Tran et al., 2012; 
Olujimi et al., 2015). Brake or tyre dust has been linked 
with Zn pollution (Harrison et al., 2012; Taiwo et al., 
2014a). Also, the emission of vanadium has been traced 
to vehicular emission through the combustion of heavy 
fuel (Taiwo et al., 2014b). However, the study by Taiwo 
et al. (2016) confirmed that dust from unpaved roads 
had significantly higher Zn concentrations than paved 
roads. The study of Qiao et al. (2013) identified high Zn 
and Cu concentrations as environmental indicators for 
urbanisation. Similarly, this claim was also supported 
by Adewunmi et al. (2017) in Ibadan (Nigeria), where 
between 2- to 4-times greater values were found for 

Cu, Zn and Fe in urban schools than semi-rural ones. 
However, spatial mapping carried out by Ogunkunle 
and Fatoba (2014) has traced Zn and Cr soil enrichment 
to cement production activities. It is worth noting that 
Fe, Cu, Cr and Ni were detected in high quantity around 
quarry sites in Ikolx10-Ekiti (Nigeria) (Ayodele et al., 
2014). Many quarry sites exist in and around Abeokuta 
environs due to the abundance of quartzite gneiss com-
plex, which produces good granite materials (Oguntoke 
et al., 2009). Similarly, Olujimi et al. (2015) suggested 
that the possible sources of pollution in these study 
areas may be linked to cement industries at Ibese and 
Ewekoro, welding activities, and construction works 
around the sites. Durowoju et al. (2018) also affirmed 
that high concentrations of heavy metals could be be-
cause of the probable nearness of the schools to bus 
stops, uncontrolled auto workshops, gas stations, in-
dustrial facilities and paint chippings.
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Pollution assessments
Igeo, Eri and ERi of the studied sites are presented in Ta-
ble 4. In Abeokuta South (1) and Odeda (3), 55.56% and 
61.11% of the monitored metals have negative Igeo val-
ues and are unpolluted. Meanwhile, at Abeokuta North 
(2), 33.33% of the monitored metals fall within the mod-
erately polluted and extremely polluted categories. All 
the monitored locations are unpolluted concerning Mn 
and strongly polluted concerning Ca, Fe, K, and Ti with 
As at Abeokuta North. The mean Igeo level for As among 
the monitored classified carcinogens (Co, Ni, As and Cr) 
is the highest, ranging between 3.10–7.61.

The Eri calculated based on the TRF of As, Cr, Cu, Ni, 
Pb, and Zn also showed that only As was relatively 

significant across the locations with a value of 128.42 
(considerable), 2934.27 (very high), and 179.33 (high) 
ecological risk potential, respectively. In addition, the 
ERi depicted low, very high, and considerable in loca-
tions 1, 2, and 3, respectively.

Health risks assessments
The exposure assessment results represented by the 
average daily doses through the ingestion, inhalation 
and dermal used to calculate both cancer and non-can-
cer risks are presented in Table 5.

Table 6 shows that the non-carcinogenic and cancer risk 
values (HI) are < 1, indicating no immediate non-car-
cinogenic health risks. For the non-carcinogenic ef-

Table 5. Assessment of the exposure to mg/kg/day of elements via inhalation, ingestion, and dermal routes

Elements 
ADD inhalation ADD ingestion ADD Dermal

mg/kg/day

Locations 1 2 3 1 2 3 1 2 3

Ca 1.10·10−6 3.90·10−6 1.93·10−6 0.06 0.21 0.11 5.41·10−4 1.91·10−3 9.47·10−4

Mn 3.24·10−8 9.36·10−8 1.40·10−8 1.76·10−3 5.09·10−3 7.63·10−4 8.82·10−4 4.58·10−5 6.87·10−6

Fe 2.28·10−7 1.70·10−6 2.91·10−7 1.24·10−2 0.09 0.02 6.21·10−3 8.33·10−4 1.43·10−4

Co 1.86·10−8 2.62·10−8 3.73·10−9 1.01·10−2 1.43·10−3 2.03·10−4 5.06·10−4 1.28·10−5 1.82·10−6

Ni 3.75·10−9 4.77·10−8 3.90·10−9 2.04·10−4 2.59·10−3 2.12·10−4 1.02·10−4 2.33·10−5 1.91·10−6

Cu 1.22·10−9 1.21·10−8 1.17·10−9 6.65·10−5 6.57·10−4 6.37·10−5 3.32·10−5 5.92·10−6 5.74·10−7

Zn 2.69·10−9 3.51·10−8 5.19·10−9 1.46·10−4 1.91·10−3 2.82·10−4 7.32·10−5 1.72·10−5 2.54·10−6

As 1.71·10−9 3.90·10−8 2.38·10−9 9.29·10−5 2.12·10−3 1.30·10−4 4.64·10−5 1.91·10−5 1.17·10−6

K 6.78·10−7 4.98·10−6 1.09·10−6 3.69·10−2 0.27 5.92·10−2 1.84·10−2 2.44·10−3 5.32·10−4

Cr 4.82·10−9 3.57·10−8 6.47·10−9 2.62·10−4 1.94·10−3 3.52·10−2 1.31·10−4 1.75·10−5 3.17·10−6

Sc 1.56·10−8 6.21·10−8 2.19·10−8 8.47·10−4 3.38·10−3 1.19·10−2 4.23·10−4 3.04·10−5 1.07·10−5

Ti 1.05·10−7 7.07·10−7 1.38·10−7 5.69·10−3 3.85·10−3 7.49·10−2 2.85·10−3 3.46·10−4 6.75·10−5

V 8.15·10−9 8.26·10−8 8.24·10−9 4.43·10−4 4.49·10−3 4.49·10−4 2.22·10−4 4.04·10−5 4.04·10−6

Ga 1.05·10−9 1.09·10−8 9.02·10−10 5.69·10−5 5.91·10−4 4.91·10−5 2.84·10−5 5.32·10−6 4.42·10−7

Ge 1.92·10−9 2.39·10−8 1.74·10−9 1.04·10−4 1.30·10−3 9.49·10−5 5.21·10−5 1.17·10−5 8.54·10−7

Se 2.56·10−9 3.52·10−8 2.79·10−9 1.40·10−4 1.91·10−3 1.52·10−4 6.98·10−5 1.72·10−5 1.37·10−6

Br 1.45·10−9 1.44·10−8 1.20·10−9 7.90·10−5 7.83·10−4 6.52·10−5 3.95·10−5 7.04·10−6 5.87·10−7

Rb 1.43·10−9 1.83·10−8 1.73·10−9 7.76·10−5 9.95·10−4 9.43·10−5 3.88·10−5 8.96·10−6 8.49·10−7

Sr 8.60·10−10 0 7.72·10−10 4.68·10−5 0 4.20·10−5 2.34·10−5 0 3.78·10−7

Abeokuta South = 1, Abeokuta North = 2 and Odeda = 3
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Table 6. Reference doses/concentration of each element with the calculated cancer and non-cancer risk values

Elements
Concentration 

(mg/kg)
RfDing  

(mg/kg/day)
RfCinh 

(mg/m3)
RfDder 

(mg/kg/day)
HQing HQinh HQder HI CR

Abeokuta South C95% UCL

Mn 0.18 0.14 5.00·10−2 0.14 8.22·10−6 4.23·10−12 6.3·10−6 1.5·10−5  

Fe 0.38 0.70 9.50·10−5 7.90·10−6 3.54·10−6 4.81·10−9 0.7896 0.7896  

Co 0.07 3.00·10−4 5.11·10−5 3.00·10−4 1.62·10−3 1.75·10−9 1.69·10−3 3.31·10−3 8.05·10−14

Ni 0.59 1.10·10−2 5.91·10−5 4.00·10−4 3.55·10−4 1.21·10−8 2.50·10−4 6.10·10−4 1.72·10−14

Cu 0.36 4.00·10−2 3.71·10−2 4.00·10−2 5.88·10−5 1.17·10−11 8.30·10−7 6.00·10−5  

Zn 0.52 0.30 0.30 0.30 1.15·10−5 2.11·10−12 2.40·10−7 1.20·10−5  

As 0.17 3.00·10−4 1.50·10−2 3.00·10−4 3.62·10−2 1.33·10−11 1.50·10−4 3.77·10−3 7.13·10−5

Cr 0.39 3.00·10−3 0.10 7.50·10−5 8.55·10−4 4.71·10−12 1.75·10−3 2.60·10−3 2.92·10−6

Ti 0.17 4.00 4.00 4.50·10−5 2.75·10−7 5.05·10−14 6.35·10−2 6.35·10−2  

Abeokuta North          

Mn 0.57 1.40·10−1 5.00·10−2 0.14 2.66·10−5 1.37·10−11 0.00642 6.45·10−3  

Fe 0.76 7.00·10−1 9.50·10−5 7.90·10−6 7.16·10−6 9.72·10−9 6.5·10−6 1.4·10−5  

Co 0.81 3.00·10−4 5.11·10−5 3.00·10−4 1.77·10−2 1.91·10−8 3.9·10−6 1.77·10−2 8.80·10−13

Ni 0.67 1.10·10−2 5.91·10−5 4.00·10−4 4.01·10−2 1.37·10−8 9.4·10−6 4.10·10−4 1.95·10−14

Cu 0.59 4.00·10−2 3.71·10−2 4.00·10−2 9.76·10−5 1.94·10−11 0.00024 3.30·10−4  

Zn 0.35 3.00·10−1 3.00·10−1 0.30 7.74·10−6 1.42·10−12 0.00516 5.17·10−3  

As 0.15 3.00·10−4 1.50·10−2 3.00·10−4 3.18·10−3 1.17·10−11 5.7·10−6 3.18·10−3 4.14·10−9

Cr 0.31 3.00·10−3 1.00·10−1 7.50·10−5 6.75·10−4 3.72·10−12 1.3·10−6 6.80·10−4 2.43·10−8

Ti 0.62 4.00 4.00 4.50·10−5 1.03·10−6 1.89·10−13 1.6·10−5 1.70·10−5  

Odeda          

Mn 0.71 0.14 5.00·10−2 0.14 3.33·10−5 1.71·10−11 4.9·10−8 3.3·10−5  

Fe 0.62 0.70 9.50·10−5 7.90·10−6 5.83·10−6 7.92·10−9 0.01814 1.82·10−2  

Co 0.35 3.00·10−4 5.11·10−5 3.00·10−4 7.58·10−3 8.18·10−9 6.1·10−6 7.59·10−3 3.76·10−13

Ni 0.65 1.10·10−2 5.91·10−5 4.00·10−4 3.89·10−3 1.33·10−8 4.7·10−6 3.90·10−4 1.89·10−14

Cu 0.43 4.00·10−2 3.71·10−2 0.04 7.02·10−5 1.39·10−11 1.4·10−8 7.00·10−5  

Zn 0.52 0.30 0.30 0.30 1.13·10−5 2.08·10−12 8.5·10−9 1.10·10−5  

As 0.02 3.00·10−4 1.50·10−2 3.00·10−4 4.16·10−4 1.53·10−12 3.9·10−6 4.20·10−4 2.03·10−13

Cr 0.64 3.00·10−3 0.10 7.50·10−5 1.41·10−3 7.75·10−12 4.2·10−5 1.45·10−3 5.40·10−12

Ti 0.52 4.00 4.00 4.50·10−5 8.52·10−7 1.57·10−13 1.51·10−3 1.51·10−3
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fects, the main exposure route to Ni, Cu, Zn, As in dust 
particles at Abeokuta South was ingestion, and Mn, Fe, 
Co, Cr and Ti was dermal. At Abeokuta North, the der-
mal exposure route had high values of HQ for Mn, Cu, 
Zn and Ti, while the HQ ingestion was the highest for 
Fe, Co, Ni, As and Cr. Meanwhile, at Odeda, the highest 
HQ values were in the dermal route for only Fe and Ti, 
while others were in the ingestion routes. Kurt-Karakus 
(2012) in Istanbul (Turkey) and Nkansah et al. (2015) 
in Ghana recorded pathways for the non-carcinogenic 
risk exposure in the order ingestion > dermal contact > 
inhalation. The HI values for elements for children de-
creased in the order of Fe > Ti > As > Co > Cr > Ni > Cu > 
Mn > Zn in Abeokuta South, Co > Mn > Zn > As > Cr > Ni > 
Cu > Ti > Fe at Abeokuta North and Fe > Co > Ti > Cr > As 
> Ni > Cu > Mn > Zn at Odeda. The metals contributing 
the greatest non-cancer risk effects are Fe at Abeokuta 

South and Odeda and Co at Abeokuta North (Fig. 2a).

In addition, CR values across the locations were below 
0.0001, depicting no immediate carcinogenic risk ef-
fects, as Nkansah et al. (2015) observed. Cancer risk 
indexes for Co, Ni, As and Cr at Abeokuta South were 
8.05·10−14, 1.72·10−14, 7.13·10−5 and 2.92·10−6; at Abeoku-
ta North, they were 8.80·10−13, 1.95·10−14, 4.14·10−9 and 
2.43·10−8, and at Odeda they were 3.76·10−13, 1.89·10−14, 
2.03·10−13 and 5.40·10−12, respectively. Fig. 2b shows 
that As contributed 96% to cancer effects in the class-
rooms at Abeokuta South, while Cr accounted for 85% 
and 90% of total cancer effects at Abeokuta North and 
Odeda, respectively. The calculated health risks show 
no potential cancer risks.

Recent years have seen the emergence of risk assess-
ment as a potent tool in investigating environmental and/
or occupational dangers (Nieuwenhuijsen et al., 2006).

Fig. 2a. Percentages of individual metals to overall non-cancer risks in children across the three sampled locations

Fig. 2b. Percentages of individual metals to overall cancer risks in children across the three locations
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Conclusions
The elemental profile of dust from 37 nursery and kinder-
garten classrooms was assessed. Metal concentrations 
were determined using X-ray fluorescence (XRF) spec-
trophotometry. Potential risks to the health of children 
and the ecosystem were calculated for exposure-point 
metal concentrations, average daily doses (ADD), hazard 
quotients (HQ), hazard indexes (HI), cancer risks (CR), 
geo-accumulation indexes (Igeo), and ecological risk in-
dexes (Eri and ERi). Odeda has the highest number of 
elements with peak mean values. The mean values of 
Ca, Co, Ni, Zn, As and K varied significantly across the 
locations. Results indicated that Ca, K, Fe and Ti ranked 
the first four metals with the highest concentration in 
different orders across the three locations. This study 
concludes that Co, As, Cr, Sc, Ge and Se levels are due 
to anthropogenic activities. There is negligible moder-
ate and extreme elemental pollution in Abeokuta South 
and Abeokuta North. Dust samples for Abeokuta South 
posed the least ecological risk, while that of Abeokuta 
North posed the greatest risk. At Abeokuta South, Abeo-
kuta North, and Odeda, respectively, Fe, Co, and Cr are 
the metals that contribute most to non-cancer risk ef-
fects. Arsenic is responsible for 96% of the cancer-caus-
ing effects in classrooms at Abeokuta South. In contrast, 
Cr is responsible for 85% and 90% of the cancer-causing 
effects at Abeokuta North and Odeda. The overall CL were 
459.32, 2922.36 and 716.92 for locations 1, 2 and 3, re-
spectively. The Eri showed significant ecologically risky 
As level across all the locations with 128.42 (consider-
able), 2934.27 (very high) and 179.33 (high), with low, 
very high and considerable ecological risk index (ERi) in 
locations 1, 2 and 3, respectively. At Abeokuta North, the 
dermal exposure route had high values of HQ for Mn, 
Cu, Zn and Ti, while the HQ ingestion was the highest for 
Fe, Co, Ni, As and Cr. Meanwhile, at Odeda, the highest 
HQ values were in the dermal route for only Fe and Ti, 

while others were in the ingestion routes. The HI values 
for elements for children decreased in the order of Fe > 
Ti > As > Co > Cr > Ni > Cu > Mn > Zn in Abeokuta South, 
Co > Mn > Zn > As > Cr > Ni > Cu > Ti > Fe at Abeokuta 
North and Fe > Co > Ti > Cr > As > Ni > Cu > Mn > Zn at 
Odeda. The metals contributing the greatest non-cancer 
risk effects are Fe at Abeokuta South and Odeda and Co 
at Abeokuta North. The CR shows no cancer risk threat 
across the locations.

The results obtained in this study largely suggest that the 
schools’ location and window or door opening for venti-
lation could be possible routes for heavy metals contam-
ination of classroom dust. Therefore, locating schools in 
pristine areas with low traffic, regular cleaning, improved 
ventilation of classrooms, and regular renovation of old 
schools are recommended to simultaneously address 
the inseparable health goals for students.

In general, to reduce children’s exposure to heavy metals 
poisoning caused by contaminated dust, more attention 
should be directed towards the general cleanliness of 
the schools’ environment, such as good housekeeping 
practices, following the safe way of disposing of wastes 
properly, and good maintenance of ventilation systems; 
besides, children should be encouraged to wash their 
hands frequently to reduce ingestion of contaminated 
dust. Consequently, a wash hand basin with a constant 
water supply should be provided in front of each class-
room. The pupils must be educated to appreciate hand-
washing and the need to desist from putting their hands 
on surfaces and dipping their mouths and noses.
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