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Landslide is one of the disasters that often occurs in Indonesia in the East Java Province, especially in Bendun-
gan District, Trenggalek Regency. Analysis of landslide susceptibility in Bendungan District is needed to spatially 
locate the landslide occurrences. The purpose of this study was to predict landslide events using an artificial 
neural network. Rainfall, topography, physical soil properties, and land-use were used as the explanatory vari-
ables. An analytic hierarchy process approach was applied to determine the weight of the variables. The model 
satisfactorily classified the landslide hazards with an area under curve of 0.96. The northwest area of the Bend-
ungan District was found to be a region at high risk with rainfall and soil texture as the most influential parts in 
triggering the landslides.
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Introduction
Landslide signifies a physical process where soil 
movement occurs and can threaten communities and 
their livelihood. Landslide is known as a globally hy-
droclimatic hazard. Landslides, when occurring mas-
sively, can lead to significant physical and economic 

losses (Bista, 2022). One obstacle in mitigating the 
negative impacts of landslides is the fact that land-
slides can be hardly predicted. Due to this danger, the 
ability to precisely predict and measure the risk level 
of landslide occurrences both temporally and spatially 
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is very important not only for land or watershed man-
agers but also for people living in the areas of close 
proximity (Abdulwahid and Pradhan, 2017; Flentje et 
al., 2007). The needs of accurate and reliable landslide 
risk information are even stronger where the areas 
susceptible to landslides are inhabited by people with 
low resilience capacity.

Landslides are physical processes that are largely 
controlled by a variety of factors. For instance, nu-
merous studies identify the key role of topography, 
climate, geology, soil, landform, land surface cover, 
and anthropogenic factors such as human activities 
and land use types (Tarolli and Sofia, 2016; Wang et al., 
2019). All these factors interact and affect the degree 
of risks or susceptibility to landslides. Characterizing 
landslide behavior requires a thorough understanding 
of the dynamics of landslides and the analysis of key 
impact factors (Yerro et al., 2019). Relying this require-
ment to the traditional collection of field data can be 
tedious, challenging, and expensive. Therefore, there 
should be an alternative to provide a reliable informa-
tion on landslide risks assessment (Dou et al., 2015; 
Fan et al., 2019a).

Advancement in computation and geospatial technol-
ogies has been proven supportive to the efforts for 
landslide modeling (Ekeanyanwu et al., 2022). There 
have been varying machine learning (ML) algorithms 
used in predicting landslide risks such as artificial 
neural network (ANN), logistics regression, random 
forest classification and regression, and support vec-
tor machine algorithms (Alqadhi et al., 2021; Nhu et 
al., 2020). Among these, the ANN appears to be the 
most popular approach gaining wider application. The 
use of the artificial intelligence (AI) through the imple-
mentation of ANN in modeling landslides is an exam-
ple of the application of such advancement. Integra-
tion of ANN models and geospatial technologies has 
been widely used in estimating landslide occurrences 
with reasonable success (Abiodun et al., 2019; Nhu 
et al., 2020). Numerous studies exploit the GIS or re-
mote sensing data combined with field measurement 
to monitor the dynamics of landslide governing fac-
tors and model them for determining landslide risks 
and susceptibility (Bvindi, 2019; Munthali, 2020). The 
ANN is a type of algorithm that mimics the process 
of the human brain in making decisions by the pres-
ence of neuron systems. In brief, the neural network 

configuration transforms the inputs through a series 
of layers and generates output layers (Zou and Ergan, 
2023). From a landslide perspective, the input layers 
represent the landslide governing factors, and the out-
put layers signify the predicted landslide occurrences. 
At this point, there is no agreed understanding about 
specific landslide factors that can be inputted into an 
ANN configuration. This suggests that there is always 
room for the ANN implementation concerning the 
uniqueness of the landscape.

Landslide is one of the disasters that often occurs in 
Indonesia. The area of East Java Province has a high 
potential for landslides is Trenggalek Regency (Ria-
di and Windiastuti, 2019). The region of Trenggalek 
Regency where landslides occur is a disaster area 
with a medium to high level of vulnerability (Susilo 
et al., 2021). The Trenggalek Regency is notable for 
a steep topography of more than 40% covering an 
area of ± 28 378.11 ha and the area of lowlands with 
a slope between 0–15% is ± 42 291.38 ha (Bappeda 
Trenggalek Regency, 2016). Bendungan District is an 
area under the slopes of Mount Wilis with an undulat-
ing hilly topography and steep slopes (Isnaini et al., 
2022). In 2016, as many as 31 landslides occurred in 
Bendungan District Trenggalek (Utama et al., 2021). 
The landslides caused damage to buildings, agricul-
tural lands and affected access to roads between the 
villages thus disrupting the network and accessibility 
of the affected settlements located nearby (Fabio et 
al., 2022; Wilopo et al., 2022). Efforts are needed to 
reduce the risk of landslides in Bendungan District in 
order to reduce the negative effects from the asso-
ciated losses. One of such efforts aimed at reducing 
losses caused by landslides can be done by conduct-
ing a landslide vulnerability analysis which will pro-
vide information on the vulnerability of landslides so 
as to minimize landslide disasters (Das et al., 2022; 
Vasileiou et al., 2022). Vulnerability mapping efforts 
are represented by potential hazards through land-
slides (Das et al., 2022; Vasileiou et al., 2022). This 
study attempts to model landslide risks in Bendun-
gan District and classify the region based on their 
corresponding risk degree. More specifically, this 
study aims at identifying the key factors controlling 
landslide occurrence, determining their relative im-
portance, and applying them to map landslide sus-
ceptibility in the study area.
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avalanches are often found on the shoulder of the roads, 
as well as terraced fields and rice fields that collapse af-
ter the high-intensity rains (Zimmern, 2020). The point of 
occurrence of landslides is presented in the distribution 
of landslide points (Fig. 2). The research findings of small 
avalanches are scattered in almost all areas of Bendun-
gan District, where moderate to severe landslide levels 
are found at several observation points. According to lo-
cal residents and Babinsa, landslides always occur after 
heavy rains and are considered normal by local residents. 
During the early 2020–2022, there have been no landslide 
events that caused casualties. The maximum loss is only 
in the form of materials such as occasional damage to 
the walls of the house that is pushed by landslide mate-
rials (Acosta et al., 2021; Guo et al., 2020).

ANN model for landslide development
Landslide hazard mapping research was conducted in 
Bendungan District, Trenggalek Regency, with the ANN 
method using survey research methods which include 
observations, recording, and measurements in the field 
and secondary data (Dalir et al., 2022). The study was 
also designed using a quantitative approach with the aim 
of calculating the parameters causing landslides as ac-

Methods
Study area
Landslide hazard mapping research was performed in 
Bendungan District, Trenggalek Regency, using the an-
alytic hierarchy process, spatial multi-criteria evaluation, 
and artificial neuron network methods. The geograph-
ic coordinates of the study area are 111°41'25.56"E to 
111°47'19.03"E and 7°53' 8.70"LS to 7°58'41.11"LS. Re-
spectively, the research location is in the north of the 
Trenggalek Regency, west of Tulungagung Regency, east 
of Ponorogo Regency and the foot of Mount Kiman-Wilis, 
East Java Province. The research area studies are pre-
sented in Fig. 1.

Based on landslide events obtained from the Pusdalops 
BPBD East Java from 2016 to 2022, there are 31 recorded 
landslide events that occurred in the Bendungan District 
and its surroundings. However, out of the 31 events, only 
about 20 reports could be plotted for the exact location, 
since the information on the coordinates of the incident 
was not clearly stated. In addition, field observations found 
8 points of avalanches that can be documented, so his-
torical data of a total of 28 landslide events are used in 
calculating landslide hazards.

According to local residents, apart from the occurrence 
of moderate-to-severe landslides, micro or small-scale 

Fig. 1. Bendungan District administration map
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curately as possible (Daviran et al., 2022; Fu et al., 2022). 
Fieldwork and surveys were carried out to collect land-
slide hazard parameters, namely soil texture class and 
soil extensibility or COLE Index and landslide occurrence 
(Dou et al., 2015; Obda et al., 2022). The parameters were 
sampled based on the landform variability in the study 
area. All data used in the study were summarized in Ta-
ble 1. Data collection techniques in this study included 
interviews, observations, and documentation. The in-
depth interviews were also conducted with village and 
sub-district officials. Personnel of the Babinsa officers 
and the Kab. Trenggalek were asked to obtain informa-
tion according to expert judgment about the role of the 
parameters used in landslide hazard vulnerability. The 
use of ANN algorithms in making ANN nodes is based 
on numeric data. These numbers will later be calculated 
using certain formulas gradually in the program where 
the user cannot intervene in the ongoing calculations; 
therefore, the GIS data which were previously in the form 
of spatial data are converted into the numerical data so 
that it can be processed further (Al Barsh et al., 2020). 
The mean square error (MSE) value as the test value for 
the accuracy of the model was used for data training, the 
lower or close to zero MSE value means that the model 
is getting better, and the MSE value 0 indicates that there 
is no error (Prayudani et al., 2019).

The output value obtained is then transformed into the 
original matrix form and then converted back into the 

form of raster spatial data so that the results can be 
interpreted and presented into a landslide hazard map 
using the ANN method (Hammad et al., 2020; Shahri et 
al., 2019). The original data attributes must be re-entered 
such as the type of coordinates used, the coordinates of 
the upper and lower corners and the side corners and 
the amount of spatial resolution. This process is in ac-
cordance with the concept of integration and utilization of 
GIS proposed by Ju et al. (2022) that land characteristics 
data can be stored in various layers, the data collected 
for each spatial unit can be analyzed and calculated so 
that the value of a space related to land suitability is ob-
tained (Wu and Lane, 2017; Yildirim et al., 2018). The ANN 
is an analysis used to determine the weights that have 
been assessed by experts/expert judgment regarding 
the landslide disasters (Danumah, 2017; Osiakwan et 
al., 2022). Assessment to the performance of classifica-
tion was carried out using a combination by considering 
iterations and the resulting errors. The model with the 
smallest errors was selected. For validation, an inventory 
map of landslide events in 2014–2019 in the form of ras-
ter data was used, omissions and model commissions 
were compared to pixel units using a confusion matrix to 
get the overall accuracy value. The generated landslide 
classes were used to develop the hazard class index 
through the use of natural breaks classification (Cao et 
al., 2016; Sema et al., 2017).

Observations in this study were carried out to collect data 
in order to verify the parameters of the landslide hazard 
related to soil characteristics such as occurrences and 
locations of former landslide events, and data collection 
of soil samples. Field observations were carried out by 
target sampling in each unit of the analysis in the form of 
a landform unit with the assumption that each landform 
has the same land characteristics. The documentation 
was carried out by obtaining information from pictures, 
writings, diagrams and other data sources from relevant 
institutions and agencies that support disaster research 
and land geology disasters. This study collected several 
data, including the following Table 1.

Data analysis in this study consisted of several stages, 
namely the pre-field and post-field stages. The pre-field 
data analysis activities consisted of analyzing the con-
sistency value of expert judgment on the landslide haz-
ard parameters using the AHP method. Post-field data 
analysis is field data processing, and artificial neural 
network classification.

Fig. 2. Map of landslide distribution in Bendungan District
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Table 1. List of data types, scale, and sources used in the study area

No Variable Scale Source Reasoning

1 Map of the Earth of Indonesia Trenggalek 1 : 25.000
https://tanahair.indonesia.
go.id/portal-web

Making a base map for determining 
the landslide point

2
Geological Map of Babadan Sheet,  
East Java

1 : 50.000 https://geoportal.esdm.go.id/
Knowing the type of source rock in 
the Bendungan District

3
Digital Elevation Model data comp 
iled from various topographic satellite 
images of DEMNAS-BIG

Spatial 
Resolution 
8.1 m 

Geospatial Information 
Agency, online recording 
year 2009

Knowing the slope as one of the 
factors that influence landslides

4
Rainfall data for 16 stations around Kab. 
Trenggalek – Tulungagung in 2012–2021 

Rainfall 
per year

Department of Public Works 
for Irrigation

Knowing the distribution of rainfall 
as one of the factors that influence 
the movement of landslides

5
Inventory map of landslide events from 
Google earth time series images and 
field observations.

1) www.https://earthengine.
google.com, 2) Researcher

Basis in the determination of 
landslides

Fig. 3. The workflow approach employed in this study
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Modeling landslide movement direction
In addition to mapping the distribution of landslide sus-
ceptibility, it is also necessary to predict the direction of 
landslide movement. This is because the distribution of 
potential landslide events is not enough to increase pub-
lic awareness (Petrucci, 2022). If the landslide hazard dis-
tribution map has a low or medium level, the community 

will tend to underestimate the potential for disasters, even 
though their settlement locations may be affected due 
to the direction of the avalanche flow (Fan et al., 2019b; 
Kjekstad and Highland, 2009). Various types of landslide 
hazard calculation models may claim that the output 
product is accurate, but this distribution map is static. 
The hazard classification from very low to very high only 
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shows the hazard class value at the location represented 
by the pixel, but is not able to provide a dynamic picture 
related to the avalanche activity (Skilodimou et al., 2019). 
With modeling of the direction of landslide movement, 
it is proposed that map users such as communities can 
better prepare themselves and increase their capabilities 
for future disaster events (Singh, 2022). Making a map of 
the direction of this landslide movement is based on us-
ing the flow direction approach in the hydrological cycle 
process. Namely, by using the assumption of fluid flow 
from a high place to a lower place, by utilizing DEM data, 
it is possible to intercept the topographic contour infor-
mation that can map flow distribution network.

Results and Discussion
Results
Characteristics of landslide affecting factors
Slope
In this study, several physical factors, namely slope 
classes, soil texture, and soil COLE values, were evaluat-
ed. The slope of the mountain has an effect on landslides, 
namely the slope that has a steeper degree will increase 
the possibility of landslides (Diara et al., 2022; Zou et al., 
2021). Landslides will not occur without a trigger or driv-
ing factor. A steep slope will not necessarily experience a 
landslide, but a slope with a steep angle of curvature and 
supported by a high rainfall factor will trigger landslides. 
Landslide is one type of soil or rock mass movement that 
generally occurs on less stable or unstable slopes (Chi-
arelli et al., 2022; Hill et al., 2022). Based on the results 
of the Digital Elevation Model (DEM) data processing, the 
DEMNAS-BIG image of Bendungan District has 5 class-

es of slope classes based on the classification, namely 
flat (0–8%), sloping (8–15%), moderately steep (15–30%), 
steep (30–45%), and very steep (> 45%). In Bendungan 
District, landslides occur on very steep, steep, and rather 
steep slopes. The following is the classification of slopes 
in Bendungan District as presented in Table 2.

Soil texture
Soil texture determines the water regimes in the soil in 
the form of penetration, infiltration speed, and the abil-
ity to retain water. Soil texture also affects the physical 
and chemical reactions in the soil, because soil particle 
size can be a determining factor for soil surface area. 
Soil with a more dominant clay fraction will have more 
surface area than soil with a dominant sand and dust 
fraction (Palayukan et al., 2022; Vlasov et al., 2022). Soil 
texture affects the level of soil permeability and also the 
level of vulnerability to landslides in the study area. For 
instance, soil with a dominating sand and dust content 
has a greater potential for landslides than soil with a clay 
texture. Soil with a predominantly clay texture has more 
capacity to hold water.

Table 3. Characteristics of soil texture in Bendungan District

No Landform
Fraction Content (%)

Texture Class*
Clay Silt Sand

1 Fault lines (v3) 12 32 56 Sandy loam

2 Foot volcano slightly eroded (v6/2) 37 38 25 Clay loam

3 Foot volcano erosion moderately (v6/3) 38 38 24 Clay loam

4 The upper slope of the volcano is heavily eroded (v5.1/4) 41 39 20 Clay

5 The upper slope of the volcano is moderately eroded (v5.3/3) 42 31 27 Clay

6 Central slope of the volcano eroded in the West (v4/4-B) 39 44 17 Silty clay loam

7 The middle slope of the volcano eroded to the East (v4/4-T) 42 41 17 Silty clay

Table 2. Slope classification in Bendungan District

Slope 
level (%)

Class Pixel Area (Ha) 
Percentage 

(%)

0–8% Flat 43 912 439.12 4.55

8–15% Sloping 112 265 1122.65 11.63

15–25% Slightly steep 384 563 3845.63 39.84

25–45% Steep 291 051 2910.51 30.15

> 45% Very Steep 133 479 1334.79 13.83

TOTAL  9652.7   
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COLE index/soil wrinkle value
Soil can undergo swelling and experience wrinkles. The 
nature of this condition is expressed as soil COLE val-
ue. This value is identified as the basis in the analysis 
of soil physical properties which focuses on changes in 
soil volume in wet or dry conditions. The wrinkle swell-
ing value / COLE value will directly affect the level of 
vulnerability to landslides. The values of COLE from the 
collected samples were then classified into classes that 
show the degree of soil wrinkle development. Table 4 
shows the magnitude of the COLE value and its classifi-
cation for each sample used.

The analysis of the physical properties of soil through 
the soil texture classification and the COLE value of 
swelling and wrinkle was carried out to obtain more 

in-depth information related to the characteristics of 
the soil in the study area. In depth information analysis 
aims to describe the characteristics of the soil and is 
associated with the results of field observations during 
the process of making a landslide inventory map. Based 
on the results of the identification of texture and wrin-
kle-swelling / COLE values, there is an alignment or 
relationship between these two parameters of physical 
properties of the soil (Sari et al., 2022). The materials 
were dominated by silt and clay fractions, while the 
sand fraction has a small percentage value, indicating 
that the soil condition has a moderate wrinkle develop-
ment value. The moderate wrinkle value / COLE value 
in the silty clay loam texture class was due to the al-
most balanced clay fraction between the clay and dust.

Table 4. Characteristics of soil texture in Bendungan District

Rainfall
Rain is one of the crucial factors that cause landslides. 
Rain is a driving force that enters the soil or rock cracks so 
that the soil becomes saturated. The steeper the slope, the 
faster the slippage speed, the looser the soil, the faster the 
soil will pass water and seep into the soil. The thicker the 
soil solum, the larger the volume of soil that will slip. De-
termination of rainfall in Bendungan District was intended 
to classify the rainfall values after it was interpolated from 
rain stations scattered around the study area from 17 rain 
gauges. The rain data used is the average annual rainfall 
for a period of 10 years, namely 2012–2021.

Table 5. Rainfall in Bendungan District

Rainfall Class (mm) Value Area (Ha) Percentage

2000–2500 2 655.48 92%

> 2500 3 8997.21 8%

Total 9652.7 100.00

In areas that have high rainfall with steep slopes prone 
to landslides, in addition, increased rainfall causes in-
creased pore water pressure., water content in soil in-
creases and clay development occurs and makes soil 
layer saturated with water (Bizimana and Sönmez, 
2015; Portelinha and Zornberg, 2017). Landslides in In-
donesia were preceded by high intensity.

Topographic position index (TPI)
The TPI modeling application was used to identify mor-
phological characteristics in the research area. The TPI 
derived from the DEM was used to model landscape 
features into morphological classes. Based on the re-
sults of the TPI modeling, morphological classes are 
divided into ridges, valleys, rivers, slopes, and hilltops. 
The TPI classification can determine which locations 
have the potential for landslides, such as the slopes that 
experience soil slippage, the valleys where deposition 
occurs, and the hillsides that experience erosion (REF). 

No Landform Cole Index Value Cole Index Classification

1 Fault lines (v3) 0.016 Low

2 Foot volcano slightly eroded (v6/2) 0.044 Medium

3 Foot volcano erosion moderately (v6/3) 0.027 Low

4 The upper slope of the volcano is heavily eroded (v5.1/4) 0.00 Medium

5 The upper slope of the volcano is moderately eroded (v5.3/3) 0.037 Medium

6 Central slope of the volcano eroded in the West (v4/4-B) 0.036 Medium

7 The middle slope of the volcano eroded to the East (v4/4-T) 0.054 Medium
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In many cases, the phenomenon of landslides occurs 
on the slopes and slopes that experience overturning.

Land cover
Environmental parameters were obtained through land 
use criteria in Bendungan District. The criteria for use are 
those factors that cause landslides. Land use was de-
rived using SAGA GIS software with supervised classifi-
cation from Sentinel 2A. This image was chosen because 
it has a fairly good resolution of 10 m and minimal cloud 
cover conditions so as to reduce the error rate. Five land 
use classes were used: sparse vegetation class, medium 
vegetation class, dense vegetation class, rice field veg-
etation class, and built up land class. Image processing 
was carried out using the ArcGIS 10.8 software and the 
results were used for subsequent modeling.

The performance of ANN
The test results of this ANN model get an MSE value of 
0.17, which means that the model error is very small, 
and the artificial neural network calculation model can 
be used further without the need for adjustment and 
retraining of data. The regression R value shows a cor-
relation between the training data and the target data, 
namely the landslide parameter data and the landslide 
hazard map data using the AHP method. The R value 
close to 1 indicates that the results of the train data have 
a close correlation with the target data, whereas if the R 

Fig. 4. Topographic position index (TPI) in Bendungan district, 
Trenggalek

 

Fig. 5. The landslide susceptibility map resulting from ANN-based 
modeling  

 

value is 0 then the training data has a random or unpat-
terned relationship with the target data. The results of 
the ANN modeling get an R value of 0.96, which means 
that the trained landslide parameter data with the AHP 
and actual landslide susceptibility data have a close or 
patterned relationship. The graph in the image below 
can be seen that the dotted line approaches the diagonal 
line for ideal results. The smaller the angle between the 
2 lines, the closer the relationship between the 2 data 
points, the larger the angle between the 2 lines, the 
more random the relationship is between the input data 
and the target.

The results of the landslide susceptibility map using the 
ANN method show that there is an alignment of the over-
all value pattern for the classification of landslide hazard; 
in processing of the ANN calculations, parameter data is 
entered as originally without any weight multiplication as 
in the AHP method, but the output results obtained almost 
resemble the same pattern. This is because the training 
target uses tentative data from the AHP method which is 
delineated with the actual landslide event; the differenti-
ating value is that the delineation of the actual landslide 
event gives an increase in value and reinforces pixel val-
ue of the landslide distribution in the final calculation of 
the ANN so that some areas previously appeared to have 
pixels. Describes the ability of artificial neural networks as 
an alternative classification that is able to accommodate 
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to improve landslide prevention and risk assessment (Fu 
et al., 2022; Ju et al., 2022). In this study, the GIS application 
and the ANN approach succeeded in predicting the land-
slide model using spatial information as a landslide-con-
ditioning factor. The ANN model is able to study complex 
relationships between input and output variables, both hu-
man and computer technology. Therefore, the ANN mod-
el is one of the best techniques used to predict landslides 
with good accuracy.

The ANN approach is used to generate a landslide model 
(Roy et al., 2022; Selamat et al., 2022). The training dataset 
is used to calculate the weights and to build the landslide 
model. Previous research found that the development of 
a landslide susceptibility model using the ANN method 
was able to produce a good predictive model. This finding 
is consistent with the findings of previous studies, which 
found that the ANN model yielded more accurate and reli-
able results in the development of landslide susceptibility 
models compared to others (Liu et al., 2022).

The integration between the GIS and the ANN is an effective 
tool for processing spatial data with many variables that 
have different parameter ranges. The ANN has the ability 
to accommodate the external spatial data of GIS with it-
eration capabilities and the advantages of pattern-based 
analysis (Jayasinghe et al., 2009). The function of collect-
ing, processing, and presenting geographic information 
system data and the classification capability of artificial 
neural networks offer a complete analysis system that is 
widely used for landslide hazard mapping (Bagherzadeh 
and Gholizadeh, 2016; Jayasinghe et al., 2009).

Analysis of landslide-conditioning factors shows that rain-
fall and texture, the most critical landslide-conditioning 
factors, and rainfall-driven landslide events are among 
the most destructive natural disasters worldwide. Based 
on the results of the study, rainfall was found to be one of 
the important landslide-conditioning factors in Bendungan 
District, Trenggalek. An increase in the intensity of rainfall 
during the rainy season will cause an increase in the inci-
dence of landslides. High rainfall intensity is often related 
to slope stability, where it affects runoff water pressure.

Most of the landslides in the study area occurred in hilly 
areas and near roads. Construction in hilly areas has a 
large negative impact on slope stability because it always 
causes engineering loads and jeopardizes the slope 
structure (Barrocu and Eslamian, 2022). Thus, any road 
construction activity that involves cutting the hillside 
more than 10 degrees causes discontinuities in soil and 

Fig. 6. Prediction map of landslide direction of ANN method, 
Bendungan District, Trenggalek

 

inputs that have different structures and pixel spans ex-
emplified in land use classification by adding pixels from 
DEM data that have different spans and types with spectral 
pixel values.

Modeling of landslide movement direction
In the landslide phenomenon, the landslide process is 
relatively the same in one vector plane, while the debris 
type avalanche will also follow the valley flow pattern 
after the material reaches a lower point. The movement 
of the landslide direction is mostly influenced by the 
type of soil and rainfall as well as the slope so that the 
direction of the landslide tends to occur in the middle of 
the slope. The direction of landslide movement tends to 
lead to the northwest.

Discussion
Landslides are the result of complex factors, including 
various causes and triggers (Loche et al., 2022; McCo-
ll, 2022). Factors that affect landslides in this study are 
slope, soil texture, soil wrinkle index, rainfall, topography 
position index, and land cover (Miswar et al., 2022; Nu-
graha et al., 2022). Landslides can occur because they 
are triggered by one or more factors. An understanding 
of landslide factors is necessary for efficient hazard man-
agement. Therefore, landslide studies are very important 
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Conclusion
This study demonstrated the ability of an ANN-based 
landslide model in Bendungan sub-district, East Java, 
Indonesia. The model developed from varying predic-
tors, namely the slope, soil texture, cole index, rainfall, 
topographic position index and land cover, can classify 
the susceptibility of landslide in the study area with a 
satisfactory result. Rainfall and soil texture appeared 
to be more influential in the landslide process in the 
study area. The approach employed in this study was 
useful in mapping the patterns, severity and direction 
of landslides.
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