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One of the alternative methods for managing irrigation water is deficit irrigation, particularly alternate furrow 
irrigation (AFI). This deficit in irrigation is affected by uncontrolled rainfall. In line with this, rainfall uncertainty 
causes a variation between the measured actual crop evapotranspiration and the theoretical crop evapotranspi-
ration. Let us imagine that rain falls during the deficit irrigation research, and the soil moisture under the deficit 
experiment is then raised to the soil field capacity. It is incorrect to report the result as a deficit. Thus, there is a 
research gap on the effect of rainfall uncertainty on the quantity of theoretical and actual crop evapotranspiration 
under deficit irrigation. This study was carried out at the Arba Minch University demonstration site on onion crops. 
Using CROPWAT 8.0 software, the reference evapotranspiration (ETo) was calculated using the Penman-Monteith 
formula. The crop coefficient and ETo were used to calculate the theoretical crop evapotranspiration. In contrast, 
actual crop evapotranspiration was calculated using soil moisture measurements before and after each irrigation 
event after applying theoretical crop evapotranspiration. As a result, there is a significant difference between 
the calculated theoretical crop evapotranspiration and actual crop evapotranspiration from a deficit study. Thus, 
the calculated seasonal theoretical crop evapotranspiration was 201.72 mm. On the other hand, the actual crop 
evapotranspiration was 275.82 mm. This revealed that the actual crop evapotranspiration was greater than the 
calculated theoretical crop evapotranspiration by 36.7%. Uncontrolled rainfall was identified as the output’s cause. 
This has an evident effect on the deficit in experimental research. Hence, conducting the deficit experiment in a 
greenhouse is more reasonable. In addition, it is possible to assess actual crop evapotranspiration based on daily 
soil moisture measurements and report the deficit level based on the measured amount.
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Introduction
Water is essential for both crops and people. Crops re-
ceive either natural or artificial watering. Irrigation is 
an artificial water delivery method used to feed crops 
in agricultural fields. Irrigated agriculture is linked 
to many environmental issues (Kamali et al., 2022). 

Fluctuations in climatic factors are one of the major 
obstacles. Crops are heavily dependent on climate like 
temperature, rainfall uncertainty, and amount of rainfall 
(Lobell et al., 2011). Rainfall variability in Ethiopia has 
demonstrated that unreliable occurrences in adequate 
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amounts and delayed beginning dates cause crop yields 
to diminish by a respectable amount in practically all 
regions (Godswill et al., 2007).

Deficit irrigation, or purposefully under-watering a crop, 
is a technique for conserving farm water and directing 
it toward municipal, industrial, or agricultural growth 
(Shammout et al., 2018). Profitability has been the focus 
of research on this method, although the findings are 
inconsistent. Agronomic and legal considerations are 
also significant in enhancing agricultural operations, 
and they go beyond economic issues when determin-
ing the feasibility of deficit irrigation (Varzi and Grigg, 
2019). In actuality, applying deficit irrigation during the 
late phase might not produce the anticipated results. 
The site might not respond to irrigation for various rea-
sons. These include the presence of perched or regional 
water tables, deep soil with high water-holding capacity 
from rainfall (Li et al., 2021), weather conditions such as 
rain and/or low temperatures that result in low evap-
orative demand (Blanco et al., 2020), and a lack of ac-
curate soil water monitoring that makes it difficult to 
accurately predict changes in soil water content during 
periods of reduced irrigation (McCarthy et al., 2002). 
While increasing the amount of annual rainfall, these 
changing conditions will alter expected rainfall patterns 
and increase extreme climatic events such as torrential 
rain, which does not count as effective rain that benefits 
the agronomical system because it cannot be collected 
(Choo et al., 2019; Nie et al., 2020).

The greatest factor in the water balance equation, rainfall, 
fluctuates in both time and space. It is reasonable to be-
lieve that rainfall is independent of vegetation type in most 
hydrological applications (Coe et al., 2009). Evapotranspi-
ration, which is directly related to vegetation features, is 
the second largest element in the water balance equation. 
In humid locations, evapotranspiration is constrained by 
the amount of energy available, while it almost always 
equals rainfall in arid and semiarid regions (Silva-Junior 
et al., 2021). Crop evapotranspiration (ETc) is a complex 
process comprising transpiration from vegetation to the 
atmosphere as well as evaporation from land surfaces 
and water bodies (Allen et al., 1998). Without the appropri-
ate correction, the traditional method for calculating actual 
crop evapotranspiration, which uses multitemporal crop 
coefficients (Kc), cannot be used in water-limited condi-
tions (Chiesi et al., 2018; Wanniarachchi and Sarukkalige, 
2022). Theoretically, this correction may be obtained using 
measurements of soil water content (Chiesi et al., 2018). 

Accurate evapotranspiration calculation is crucial because 
it plays a major role in agriculture (Gao et al., 2018; Khan 
et al., 2010; Rawat et al., 2019). 

To calculate actual crop evapotranspiration, several 
methods have been developed. One of the more popu-
lar methods was the Penman-Monteith (PM) approach, 
which is based on meteorological parameters (Allen 
et al., 1998). Crop evapotranspiration can also be cal-
culated using the water balance approach by quantify-
ing it and using it as the residual in the water balance 
equation (Long et al., 2014; Wan et al., 2015). Effective 
calculation of actual evapotranspiration in an irrigated 
field can be done using the soil water balance approach 
(Libardi et al., 2015). This method is simple and poten-
tially valid as long as other components of the water 
balance can be measured properly. It ensures an ac-
curate computation of ET (Wan et al., 2015). Rainfall is 
one of the factors used in this water balance equation to 
calculate actual crop evapotranspiration (Hasenmueller 
and Criss, 2013). This rainfall varies throughout time, 
which is problematic for agriculture. It has two sep-
arate effects on crops: heavy rainfall and low rainfall. 
Irrigation makes it almost possible to avoid low rain-
fall, but excessive rainfall at the end of the crop season 
causes yield damage (Alam et al., 2011). Therefore, the 
main objective of this study was to evaluate the impact 
of rainfall uncertainty on crop evapotranspiration on a 
deficit study in the experimental area.

Materials and Methods 

Description of the study area
The demonstration farm at Arba Minch University 
served as the study site. The study region is situated 
geographically at an altitude of 1203 m.a.s.l., 6°04’ N 
latitude, and 37°33’ E longitude. The time frame for 
this study was from August to November 2019. Fig. 1 
shows the study location map. The soil texture, bulk 
density, field capacity and permanent wilting point 
of the study site were silty clay, 1.26 g/cm3, 36% and  
20.1%, respectively (Asres et al., 2022).

Data collection
The Arba Minch University Meteorological Station pro-
vided the climate data (maximum and minimum tem-
perature, relative humidity, sunshine, wind speed and 
rainfall). The climate data were collected from 1987 to 
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2018 and the crop grown time from August to Novem-
ber of 2019. The FAO paper was used to gather onion 
crop coefficients (Allen et al., 1998). Field and laborato-
ry analyses were performed on significant soil physical 
data, including soil texture, bulk density, field capacity, 
and permanent wilting point. Soil moisture of each irri-
gation event was measured both before and after irri-
gation. For this study, an onion crop was employed as 
a test crop. The onion crop is commonly grown in the 
agro-ecological zone of the study area. The agro-eco-
logical zone of the study area is classified as dry low 
land. The behavior of dry low land includes an average 
altitude range of 500–1400 m.a.s.l. and an average an-
nual rainfall below 900 mm (MOA, 2000). 

Reference evapotranspiration and theoretical 
crop evapotranspiration
The previously developed Penman-Monteith method 
was used to determine reference evapotranspiration 
using CROPWAT 8.0.  Mathematically, it can be ex-
pressed using Equation 1:
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Using Equation (3), the net irrigation water requirement 
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soil and about 16 hours in sandy soil. Therefore, in this study, the soil moisture after irrigation was measured after 24 48 
hours; however, until that time, the crop consumed water. This is the reason why the one-day crop evapotranspiration 49 
value was added to the equation.  50 

A general flow chart of this study is presented in Fig. 2. 51 
 52 

(5)

Where: ETa is actual evapotranspiration between two 
irrigations (mm)’ ωai is gravimetric soil moisture con-
tent after irrigation for ith soil layer (fraction); ωbi is 
gravimetric soil moisture content before the next irri-
gation for ith soil layer (fraction); Zri is crop root depth 
for ith soil layer (mm); Asi is the apparent specific grav-
ity for ith soil for layer; Pe is effective rainfall between 
soil moisture measurements (mm); i is soil layer; E1 
is crop evapotranspiration for one day after the next 
irrigation (mm).

The best time to measure soil moisture depth in loamy 
soil after irrigation should be about 24 hours when soil 
saturation has drained to full capacity (Herrerra and 
White, 2002; Shortt et al., 2011). It may take 36 hours 
in heavy soil and about 16 hours in sandy soil. There-
fore, in this study, the soil moisture after irrigation was 
measured after 24 hours; however, until that time, the 
crop consumed water. This is the reason why the one-
day crop evapotranspiration value was added to the 
equation. 

A general flow chart of this study is presented in Fig. 2.
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Table 1. Theoretical crop evapotranspiration, effective rainfall and actual crop evapotranspiration

Interval (days)
Theoretical approach

ETa (mm)
*ETo (mm) Kc ETc (mm) ETc at DI (mm) RF (mm) Pe (mm)

09–14 Aug 22.45 0.7 15.72 7.86 18.2 8.33 18.27

14–20 Aug 23.44 0.7 16.41 8.2 0 0 7.8

20–26 Aug 24.18 0.7 16.93 8.46 3.9 3.9 10.24

26–01 Sept 24.03 0.75 17.94 8.97 14.6 14.6 16.39

01–07 Sept 25.38 0.82 20.73 10.36 11.8 10.3 24.45

07–13 Sept 25.94 0.89 23 11.5 0 0 6.61

13–19 Sept 25.8 0.96 24.68 12.34 2 2 7.69

19–25 Sept 25.15 1.03 25.82 12.91 2.4 2.4 12.64

25–01 Oct 24.95 1.05 26.2 13.1 9.3 9.3 17.65

01–07 Oct 25.21 1.05 26.47 13.24 77.9 26.47 26.47

07–13 Oct 24.52 1.05 25.75 12.87 44.6 17.2 24.41

13–19 Oct 24.07 1.05 25.27 12.64 10.9 5.4 10.71

19–25 Oct 24.14 1.05 25.35 12.67 17.4 9.6 14.49

25–31 Oct 24.02 1.05 25.22 12.61 5 5 11.3

31–06 Nov 24.69 1.05 25.92 12.96 6 4.8 11.93

06–12 Nov 24.3 0.95 23.09 11.54 10.9 6.2 15.64

12–18 Nov 24.14 0.85 20.52 10.26 8.5 3.4 16.07

18–24 Nov 24.61 0.75 18.46 9.23 0 0 23.06

Total 403.48 201.72 243.4 128.9 275.82

*Eto, Reference crop evapotranspiration; Kc, crop coefficient; ETc, theoretical crop evapotranspiration; DI, deficit irrigation; RF, rainfall; Pe, 
effective rainfall; Eta, actual crop evapotranspiration.

Results and Discussion
Based on calculated amounts of reference evapotran-
spiration (ETo) and crop coefficients, the theoretical crop 
evapotranspiration (ETc) for the onion crop was calculat-
ed. Table 1 provides the theoretical ETc and actual ETa val-
ues for the onion crop for each irrigation event across the 
crop base period. As shown in Table 1, the actual evapo-
transpiration of the crop during the irrigation event that 

lasted six days was 18.27 mm, compared with the crop’s 
theoretical evapotranspiration of 7.86 mm. This showed 
that unmanaged rainfall is the cause of this overestima-
tion of actual crop evapotranspiration. This rain is compli-
cating the studies on deficit irrigation. However, during the 
examination of the experiment, the other supplementary 
sources for crop evapotranspiration were absent. 

Under deficit irrigation conditions, the calculated ETc and 
measured ETa varied depending on the irrigation event. 
Fig. 3 showed the measured ETa and calculated ETc. The 
two variables in the relationship oscillate one another, so 
that the maximum theoretical crop evapotranspiration is 

oscillated with the actual crop evapotranspiration. The 
results of this investigation are completely different. With 
the exception of five irrigation events, every irrigation 
event’s actual crop evapotranspiration is overestimated 
compared with the theoretical crop evapotranspiration.
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Libardi et al., 2015; Tilahun and John, 2012; Todorovic, 
2016). However, the crop in this study does not receive 
groundwater input by capillary rise. Groundwater has 
no contribution to crops if the level of groundwater is 
more than one meter below the crop root zone (Allen 
et al., 1998). In keeping with this, throughout the re-
search at the experimental site, the groundwater level 
was not visible up to 2 m below the soil surface. On the 
other hand, only irrigation is controlled from input; nat-
ural rainfall is not. According to Liu et al. (2020), rainfall 
is a fundamental component of the water cycle and a 
key factor in the equation for the water balance. This 
greatest factor in the water balance equation fluctu-
ates in both time and space (Coe et al., 2009), which 
has an effect on agricultural productivity. Although ir-
rigation serves as insurance for rain-fed agriculture in 
the event of irregular rainfall, rainfall (particularly ex-
cess rainfall) is not required in the experimental study 
of deficit irrigation. It is not only disadvantage for the 
experimental area, but also a negative effect on crop 
production if it is raining over crop water requirement. 
The majority of crops are susceptible to this extreme 
moisture, which can have a major effect on yields. 
Therefore, deficit irrigation is one of the management 
practices that discourage unmanaged rainfall, which 
results in the fluctuation of theoretical and actual crop 
evapotranspiration.

Actual crop evapotranspiration in non-irrigated loca-
tions typically does not exceed rainfall, with a small 
temporal buffer dependent on the soil capacity to retain 
water. Because some water will be lost by percolation 
or surface drainage, actual crop evapotranspiration will 
typically be less than rainfall (Hasenmueller and Criss, 
2013). In areas with deficit irrigation, rainfall may not 
result in significant percolation and drainage, because 
the voids of the deficit experiment are more air than 
water. After the soil moisture deficit is filled, runoff or 
deep percolation occurs. Up until the field’s capacity, 
all rainfall is successfully stored in the crop root zone. 
This indicates that rain is captured in the root zone of 
the crop and expelled by evapotranspiration. There is 
no percolation out of the bottom of the soil layer un-
til the moisture deficit is eliminated (Datta et al., 2017; 
ITRC, 2003). That is the reason for the observed overes-
timation of 36.7% from actual crop evapotranspiration. 
Therefore, rainfall in studying deficit irrigation is quite 
difficult. Accordingly, during periods of heavy rainfall, 
the deficit in soil moisture reaches or exceeds the 

Fig. 3. Theoretical and measured crop evapotranspiration
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evapotranspiration observed in the field was measured at 275.82 mm and 201.73 mm, respectively. In accordance with 14 
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The following graphical outputs (Fig. 4) are the results of 
an analysis and observation of seasonal theoretical and 
actual crop evapotranspiration for onion crop under defi-
cit conditions. The seasonal actual and theoretical crop 
evapotranspiration observed in the field was measured 
at 275.82 mm and 201.73 mm, respectively. In accord-
ance with this, the measured actual crop evapotranspi-
ration is 36.7% more than the calculated theoretical crop 
evapotranspiration. The question is where this much wa-
ter is lost through crop evapotranspiration.

As mentioned clearly in the water balance components, 
it is obvious that this water comes from supplemental 
sources (soil moisture, rainfall, and groundwater input 
through capillary rise). Input (rainfall, irrigation, and 
groundwater), storage (soil water storage), and output/
loss (evapotranspiration, runoff, and drainage) all con-
tribute to the water balance (Cui and Zornberg, 2008; 
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field’s capacity. The experimental design, however, only 
considers the theoretical crop evapotranspiration. The 
main challenges, according to Capra et al. (2008), are 
that deficit irrigation requires precision watering and 
some challenges are related to the lack of expertise 
necessary. Because rainfall that happens throughout 
the growing season has a direct impact on agricultur-
al yield, weather uncertainty puts farmers at a con-
siderable risk (Wibowo et al., 2019). It is preferable to 
undertake deficit irrigation studies in a greenhouse to 
manage rainfall uncertainties. The undesired rain is ef-
fectively monitored in a greenhouse. In a greenhouse, 
Mao et al. (2003) conducted research on deficit irriga-
tion for a cucumber crop and found accurate results. 
In line with this, the water balance equation used to 
estimate crop evapotranspiration does not take rain-
fall into account (Mao et al., 2003; Chand et al., 2020). 
According to Trout and Jonge (2021), both the effect of 

the current soil water shortage on water uptake and 
stomatal resistance and the effect of the previous wa-
ter stress on plant growth had an impact on crop evap-
otranspiration. When the soil water deficit exceeded 
25% of the total plant accessible water, the measured 
evapotranspiration was lower than the potential crop 
evapotranspiration.

Deficit irrigation is a technology to manage irrigation 
water. During testing, uncontrolled rainfalls happened 
and significantly affected the result as well as the report 
of research. When only deficit irrigation is taken into 
account, the crop yield is good due to the crop getting 
enough water at the time of rain. Therefore, in relation 
to this, it is recommended to ignore the theoretical ap-
proach of crop evapotranspiration estimation and fol-
low actual soil moisture measurement to monitor defi-
cit irrigation and apply the irrigation water to the crop 
based on the measurement of soil moisture only.

Conclusions
Irrigated agriculture is associated with various envi-
ronmental challenges. The fluctuations in meteoro-
logical variables, including rainfall, are among the key 
obstacles. The measurement of actual crop evapotran-
spiration was significantly impacted by rainfall in the 
deficit irrigation research. According to this study, the 
difference between actual and theoretical crop evapo-
transpiration is overstated by up to 36.7%. In keeping 
with this, it has an impact on the deficit irrigation nam-
ing (level) at the end of the experiment. Therefore, it is 
better to re-adjust the level of deficit irrigation based on 
the consumed water compared with the control treat-
ment at the end of the season. The uncontrolled rainfall 

is what causes the observed overvalue of the actual 
crop evapotranspiration. Accordingly, the most difficult 
water balance factor in the research of deficit irrigation 
is rainfall. To evaluate the impact of deficit irrigation on 
any agronomic parameters, it is therefore preferable 
to employ a greenhouse. The unwanted rainfall can be 
adequately monitored in this greenhouse.
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