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The mining industry generates acid mine drainage (AMD) characterized with a low pH value and high dissolved 
metal concentration that leads to the negative impacts on the environment and human health. The objectives 
of this research were to investigate the growth response of mixed culture of microalgae Chlorella sorokiniana 
and Monoraphidium neglectum in a liquid media contaminated with AMD; generate the optimum environmental 
conditions (pH value and contact time) to determine the efficiency biosorption of iron and manganese contained 
in the solution of AMD into the consortium of microalgae; and quantify the maximum removal amount of iron 
and manganese contained in the solution of AMD by utilizing microalgae consortium of Chlorella sorokiniana 
and Monoraphidium neglectum as biosorbent. AMD used in this research was characterized with a pH value of 
1.65 with iron and manganese concentrations of 8.28 mg/L and 4.57 mg/L. The research of biosorption was con-
ducted in 150 rpm with pH level variations of 4, 5, and 6, and contact time variations of 60, 120, and 180 min. The 
maximum value of iron and manganese removals occurred when pH level reached 5 at 180 min of contact time 
with removal efficiency of 89.73% for iron and 94.53% for manganese. The results proved that the mixed culture 
of microalgae namely Chlorella sorokiniana and Monoraphidium neglectum can be utilized to remove iron and 
manganese contained in acid mine drainage.
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Introduction
Acid mine drainage (AMD) is characterized by low pH 
value of 1.5 to 4, which is mostly produced by mining 
industries. Since AMD may contain high dissolved met-
al compounds such as iron, aluminum, manganese, 
cadmium, copper, lead, zinc, arsenic and mercury, 
AMD is classified as a type of wastewater. A highly 
acidic solution can cause corrosion on pipes and build-
ings; moreover, this acidic water is also dangerous for 
organisms. Heavy metal compounds contained in AMD 
can potentially threaten human life due to their toxici-
ty, persistence and ability to accumulate in the human 
body (Wahyudin et al., 2018; Rinanti et al., 2021).

Meanwhile, AMD can be basically treated using phys-
ical, chemical, and biological methods (Tong et al., 
2021). However, further processing stages must be 
conducted before dumping it into the environment. Pre-
vious research has shown that a physical processing 
method experienced a couple of weaknesses such as 
a high processing cost and a low removal capacity on 
low AMD concentrations (less than 100 mg/L) (Rinanti, 
2018). The treatment process of AMD using a biological 
method is commonly practiced through the utilization 
of sulphate reducer, yet it requires a long period of res-
idence time and adequate organic substrate supply to 
reach the maximum removal effectiveness (Mang and 
Ntushelo, 2020). In the context of reducing the negative 
impact of AMD, the development of green technology, 
such as the increasing utilization of microalgae, is es-
sential to uncover. 

Furthermore, the utilization of microalgae to remove 
heavy metal contained in AMD is determined by many 
factors such as pH, temperature, contact time, and 
nutrition (Sunaryo et al., 2019). A number of previous 
researchers have claimed that the utilized microal-
gae biomasses were usually the dead ones. Howev-
er, in this research, the utilized microalgae biomass 
is a living one, since a living microalgae biomass can 
remove heavy metal through various mechanisms 
such as bioaccumulation, biotransformation, or bi-
odegradation that would lead to a higher level of re-
moval efficiency. Another previous research has also 
stated that microalgae biosorbent has the ability to 
remove heavy metals up to 100% on certain condi-
tions (Zeraatkar et al., 2021). Liang et al. (2017) have 
demonstrated the ability of Chlorella sorokiniana as 

a microalgae biosorbent, and showed that it was able 
to remove 51.90% of heavy metal Pb in wastewater 
at pH 6.7 and initial microalgae density of 0.739x1010 
cells/L. Meanwhile, Monoraphidium griffithii also has 
an adsorption ability of 29.7  mg/g and zinc removal of 
84.8% at pH 7–7.5, temperature 24°C, initial zinc con-
centration 10 mg/L (Bácsi al., 2015). According to León 
et al. (2021), Chorella sorokiniana has performed ideal 
microalgal traits to provide a study for bioremediation, 
through its ability to grow under unfavorable conditions 
and surpass other microalgae. The freshwater mi-
croalga Monoraphidium sp. was used in the research 
of Novak et al. (2020) to show the higher level of toler-
ance to heavy metals than other strains of freshwater 
microalgae such Desmodesmus sp.

Hence, this research aims to treat AMD attributed with 
low pH and containing iron (Fe) and manganese (Mn) 
using microalgae biosorbent. In order to achieve the 
expected results, three essential steps were conduct-
ed, such as investigating the growth response of mixed 
culture of microalgae Chlorella sorokiniana and Mon-
oraphidium neglectum in a liquid media contaminat-
ed with AMD; generating the optimum environmental 
conditions (pH value and contact time) to determine the 
efficiency biosorption of iron and manganese contained 
in the solution of AMD into the consortium of microal-
gae; and quantifying the maximum removal amount of 
iron and manganese contained in the solution of AMD 
by utilizing microalgae consortium of Chlorella soro-
kiniana and Monoraphidium neglectum as biosorbent.

Methods

Microalgae culture and nutritions
This research used a microalgae culture as a consorti-
um that consists of Chlorella sorokiniana and Monora-
phidium neglectum purchased from the Laboratory of 
Indonesian Culture Collection (InaCC). The microalgae 
were cultivated in a media of Provasoli Haematococcus 
Medium (PHM). The composition elements for analysis 
(p.a), produced by Supelco and purchased from online 
stores in Indonesia, were added two drops of Fe stock 
and two drops of a trace element into 1 L of distilled 
water. 1 L of Fe stock contains 189 g of EDTA and 24.4 g 
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of FeCl3.6H2O. Meanwhile, 500 mL of a trace element 
solution contain 2.05 mg of ZnCl2, 30.5 mg of H3BO3, 
2.55 mg of CaCl2.6H2O, 3 mg of CuSO4.5H2O, 2.05 mg 
of MnCl2.4H2O and 19 mg of (NH4)6 Mo7.O24.4H2O. The 
microalgae consortium was utilized as a biosorbent 
to treat artificial AMD by mixing 8.28 mg of FeSO4, 
4.57 mg of MnSO4, and 0.2 N H2SO4 into 1 L of distilled 
water until it reached pH value of 1.65.

Acid mine drainage preparation
The acid mine drainage used in this study was an ar-
tificial AMD that was made according to the charac-
teristics of AMD generated by the coal mining in East 
Kalimantan, Indonesia, with the value of pH 1.65, the 
concentration of iron 8.28 mg/L and manganese 4.57 
mg/L (Rizki, 2013).

In order to create an artificial AMD, 8.28 mg FeSO4 and 
4.57 mg MnSO4 were respectively dissolved into 1 L of 
distilled water. pH of AMD was then adjusted by adding 
0.2N H2SO4 solution to reach a pH of 1.65. Then, 36 mL 
of AMD solution was contacted with 10% biosorbent in 
a 50 mL Erlenmeyer flask.

Microalgae cultivation 
Chlorella sorokiniana and Monoraphidium neglectum 
were each cultivated in a series of 100 mL Erlenmeyer 
flasks with a total culture volume of 80% of the con-
tainer volume used (80 mL of total culture volume), 
and the volume of media was 90% of the total culture 
volume (72 mL of media volume).

Chlorella sorokiniana and Monoraphidium neglectum 
microalgae were mixed in a composition ratio of 1:1 
and cultivated in a 50 mL Erlenmeyer flask. The cul-
ture had the composition ratio 9:1 (media: microalgae) 
which only occupied 80% of the total given volume of 
the utilized Erlenmeyer flask, set at a temperature of 
30°C, pH value of 7, and cultivated permanently under 
3500 lux in the Laboratory of Environmental Microbiol-
ogy. When microalgae biomass reached its exponential 
phase, the microalgae were then harvested to be uti-
lized on the biosorption study.

Biosorption study
Biosorption study was initiated by contacting a 10% 
concentration of microalgae biosorbent in a 50 mL Er-
lenmeyer flask that contained media contaminated by 
AMD, inserted in a shaker with the rotation of 150 rpm 
and set at the temperature of 30°C. The variations of pH 

in the biosorption study were designated at the value of 
4, 5, and 6, which were obtained by adding 0.1N NaOH 
or 0.1N H2SO4 until the solution reached the intended 
pH value. After measuring the optimum pH, the study 
was continued by measuring the optimum contact time 
on the optimum pH. Meanwhile, the contact time vari-
ations were 60, 120, and 180 min.

Afterwards, the study used atomic absorption spec-
trometry (AAS) to measure the concentration of heavy 
metals contained on microalgae biosorbent in the me-
dia. The removal efficiency of iron and manganese can 
be calculated by using the following formula:
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Where: Kf – adsorption capacity (L/mg); 1/n – adsorp-
tion intensity; Ce – adsorbate concentration on balance 
(mg/g); qe – number of adsorbates on balance (mg/g).
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Adsorption kinetics
Adsorption kinetics is the curve (or line) that describe 
the retention rate or substance release from a solid 
phase surface at a certain adsorbent dose, temper-
ature, flow rate, and pH. In this research, the studied 
adsorption kinetics were the reaction of the first and 
second order kinetics. The results of both kinetics were 
plotted to obtain the R2 value. The curve with the R2 val-
ue higher than 0.99 is considered as the most suitable 
curve (Michalak et al., 2013). The linear mathematical 
formula of order reaction one is as follows:
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isotherm explains the surface layering by balancing adsorption and desorption rates. The formula is as follows: 15 
 16 
��
�� = �

��.��
+ ����  (3) 17 

 18 
Where: Ce – adsorbate concentration on balance (mg/g); 19 
 KL – Langmuir constant (mg/g); 20 
 qe – number of adsorbates on balance (mg/g); 21 
 qm – the maximum adsorption capacity (mg/mL). 22 

 23 
The adsorption mechanism used Freundlich isotherm especially with the heterogenous surface of sorbent. 24 

The formula of Freundlich isotherm is as follows: 25 
 26 
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 28 
Where: Kf – adsorption capacity (L/mg); 29 
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 qe – number of adsorbates on balance (mg/g). 32 

 33 
Adsorption kinetics 34 

 35 
Adsorption kinetics is the curve (or line) that describe the retention rate or substance release from a solid 36 

phase surface at a certain adsorbent dose, temperature, flow rate, and pH. In this research, the studied adsorption 37 
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al., 2013). The linear mathematical formula of order reaction one is as follows: 40 

 41 
Ln �Qe − Qt� = ln Qe − k�t (5) 42 
 43 
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 k1 – order one kinetics; 46 
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 48 
Meanwhile, the linear mathematical formula for reaction order two is as follows: 49 
 50 
�
��  = �

��.��� + �
�� (6) 51 

 52 
Where: Qt – number of adsorbed compounds at t time; 53 
 Qe  – number of adsorbed compounds on balance (mg/g); 54 
 k2 – order two kinetics rate; 55 
 t – time. 56 
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The observation of the growth of mixed culture of microalgae was carried out for 22 days and measured for 60 
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findings of the preliminary study, the mixed culture of 
microalgae experienced four growth phases (Krishnan 
et al., 2015; Price and Farag, 2013). According to Fig. 1, 
on day 0 to day 10, the mixed culture of microalgae was 
in the lag phase (adaptation period) yet showed a little 
to no increase in absorbance. Then on day 10 to day 
20, the mixed culture of microalgae began to enter the 
exponential phase, as seen from a significant increase 
in absorbance. 

The cultivation of mixed cultures on liquid media con-
taminated with acid mine drainage showed different 
results. As it can be seen in Fig. 1 (b), the mixed cul-
ture of microalgae directly entered the exponential 
phase on day 0 to day 2 without going through the lag 
phase (adaptation period) first. This indicates that the 
mixed culture of microalgae was able to utilize metal 
compounds of iron and manganese contained in acid 
mine drainage as nutrients to support the microalgae 
growth. As mentioned, microalgae utilize heavy metal 
compounds such as boron (B), cobalt (Co), copper (Cu), 
iron (Fe), molybdenum (Mo), manganese (Mn), and zinc 
(Zn) as trace elements in the enzymatic process and 
cell metabolism (Leong and Chang, 2020).

However, the value of maximum absorbance for the 
mixed culture of microalgae on the liquid media con-
taminated with AMD was ten times lower than the 
absorbance of the mixed culture of microalgae on the 
media that was not contaminated with AMD. The low 
absorbance value of the microalgae was presumed as 
the result of a longer exposure period to heavy metals 

Fig. 1.  Growth curve in (a) PHM media; (b) PHM media contaminated by AMD

 

4 
 

the lag phase (adaptation period) yet showed a little to no increase in absorbance. Then on day 10 to day 20, the 1 
mixed culture of microalgae began to enter the exponential phase, as seen from a significant increase in absorbance.  2 

The cultivation of mixed cultures on liquid media contaminated with acid mine drainage showed different 3 
results. As it can be seen in Fig. 1 (b), the mixed culture of microalgae directly entered the exponential phase on 4 
day 0 to day 2 without going through the lag phase (adaptation period) first. This indicates that the mixed culture 5 
of microalgae was able to utilize metal compounds of iron and manganese contained in acid mine drainage as 6 
nutrients to support the microalgae growth. As mentioned, microalgae utilize heavy metal compounds such as 7 
boron (B), cobalt (Co), copper (Cu), iron (Fe), molybdenum (Mo), manganese (Mn), and zinc (Zn) as trace 8 
elements in the enzymatic process and cell metabolism (Leong and Chang, 2020). 9 

However, the value of maximum absorbance for the mixed culture of microalgae on the liquid media 10 
contaminated with AMD was ten times lower than the absorbance of the mixed culture of microalgae on the media 11 
that was not contaminated with AMD. The low absorbance value of the microalgae was presumed as the result of 12 
a longer exposure period to heavy metals contained in the AMD solution, which may affect the growth of 13 
microalgae. According to the preliminary study, the concentration of heavy metals and the exposure time are taken 14 
into account for the impact of the toxic nature of a heavy metal to microbes (Ouyang et al., 2012). Moreover, the 15 
blocking of important molecular functional groups such as enzymes and transport systems for nutrients and ions 16 
by heavy metals may lead to the inclination of toxicity of heavy metals to microbes (Naorbe and Serrano, 2012; 17 
Siwi et al., 2018). 18 

 19 

 20 
(a) 21 

 22 
(b) 23 

 24 
Fig. 1.  Growth curve in (a) PHM media; (b) PHM media contaminated by AMD 25 
 26 
Table 1. Iron metal (Fe) biosorption with pH variations 27 

pH 

Initial 
concentration 

(Co) 

Final 
concentration 

(Ce) 
Co−Ce Removal 

efficiency 
Adsorption 

capacity (Qe) 

(mg/L) (mg/L) (mg/L) (%) (mg/mL) 
4 

8.28 
2.10 6.18 74.64 0.062 

5 1.48 6.81 82.19 0.068 
6 1.70 6.58 79.47 0.066 

 28 
Table 2.  Manganese metal (Mn) biosorption with pH variations 29 

A
bs

or
ba

nc
e 

(A
BS

)

Days

0.180

0.160

0.140

0.120

0.080

0.060

0.040

0.000

0.020

0.100

0 5 10 15 20 25

A
bs

or
ba

nc
e (

A
BS

)

Days
0 2 4 6 10 14128 16

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.000

0.002

0.010

 

4 
 

the lag phase (adaptation period) yet showed a little to no increase in absorbance. Then on day 10 to day 20, the 1 
mixed culture of microalgae began to enter the exponential phase, as seen from a significant increase in absorbance.  2 

The cultivation of mixed cultures on liquid media contaminated with acid mine drainage showed different 3 
results. As it can be seen in Fig. 1 (b), the mixed culture of microalgae directly entered the exponential phase on 4 
day 0 to day 2 without going through the lag phase (adaptation period) first. This indicates that the mixed culture 5 
of microalgae was able to utilize metal compounds of iron and manganese contained in acid mine drainage as 6 
nutrients to support the microalgae growth. As mentioned, microalgae utilize heavy metal compounds such as 7 
boron (B), cobalt (Co), copper (Cu), iron (Fe), molybdenum (Mo), manganese (Mn), and zinc (Zn) as trace 8 
elements in the enzymatic process and cell metabolism (Leong and Chang, 2020). 9 

However, the value of maximum absorbance for the mixed culture of microalgae on the liquid media 10 
contaminated with AMD was ten times lower than the absorbance of the mixed culture of microalgae on the media 11 
that was not contaminated with AMD. The low absorbance value of the microalgae was presumed as the result of 12 
a longer exposure period to heavy metals contained in the AMD solution, which may affect the growth of 13 
microalgae. According to the preliminary study, the concentration of heavy metals and the exposure time are taken 14 
into account for the impact of the toxic nature of a heavy metal to microbes (Ouyang et al., 2012). Moreover, the 15 
blocking of important molecular functional groups such as enzymes and transport systems for nutrients and ions 16 
by heavy metals may lead to the inclination of toxicity of heavy metals to microbes (Naorbe and Serrano, 2012; 17 
Siwi et al., 2018). 18 

 19 

 20 
(a) 21 

 22 
(b) 23 

 24 
Fig. 1.  Growth curve in (a) PHM media; (b) PHM media contaminated by AMD 25 
 26 
Table 1. Iron metal (Fe) biosorption with pH variations 27 

pH 

Initial 
concentration 

(Co) 

Final 
concentration 

(Ce) 
Co−Ce Removal 

efficiency 
Adsorption 

capacity (Qe) 

(mg/L) (mg/L) (mg/L) (%) (mg/mL) 
4 

8.28 
2.10 6.18 74.64 0.062 

5 1.48 6.81 82.19 0.068 
6 1.70 6.58 79.47 0.066 

 28 
Table 2.  Manganese metal (Mn) biosorption with pH variations 29 

A
bs

or
ba

nc
e 

(A
BS

)

Days

0.180

0.160

0.140

0.120

0.080

0.060

0.040

0.000

0.020

0.100

0 5 10 15 20 25

A
bs

or
ba

nc
e (

A
BS

)

Days
0 2 4 6 10 14128 16

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.000

0.002

0.010

 

4 
 

the lag phase (adaptation period) yet showed a little to no increase in absorbance. Then on day 10 to day 20, the 1 
mixed culture of microalgae began to enter the exponential phase, as seen from a significant increase in absorbance.  2 

The cultivation of mixed cultures on liquid media contaminated with acid mine drainage showed different 3 
results. As it can be seen in Fig. 1 (b), the mixed culture of microalgae directly entered the exponential phase on 4 
day 0 to day 2 without going through the lag phase (adaptation period) first. This indicates that the mixed culture 5 
of microalgae was able to utilize metal compounds of iron and manganese contained in acid mine drainage as 6 
nutrients to support the microalgae growth. As mentioned, microalgae utilize heavy metal compounds such as 7 
boron (B), cobalt (Co), copper (Cu), iron (Fe), molybdenum (Mo), manganese (Mn), and zinc (Zn) as trace 8 
elements in the enzymatic process and cell metabolism (Leong and Chang, 2020). 9 

However, the value of maximum absorbance for the mixed culture of microalgae on the liquid media 10 
contaminated with AMD was ten times lower than the absorbance of the mixed culture of microalgae on the media 11 
that was not contaminated with AMD. The low absorbance value of the microalgae was presumed as the result of 12 
a longer exposure period to heavy metals contained in the AMD solution, which may affect the growth of 13 
microalgae. According to the preliminary study, the concentration of heavy metals and the exposure time are taken 14 
into account for the impact of the toxic nature of a heavy metal to microbes (Ouyang et al., 2012). Moreover, the 15 
blocking of important molecular functional groups such as enzymes and transport systems for nutrients and ions 16 
by heavy metals may lead to the inclination of toxicity of heavy metals to microbes (Naorbe and Serrano, 2012; 17 
Siwi et al., 2018). 18 

 19 

 20 
(a) 21 

 22 
(b) 23 

 24 
Fig. 1.  Growth curve in (a) PHM media; (b) PHM media contaminated by AMD 25 
 26 
Table 1. Iron metal (Fe) biosorption with pH variations 27 

pH 

Initial 
concentration 

(Co) 

Final 
concentration 

(Ce) 
Co−Ce Removal 

efficiency 
Adsorption 

capacity (Qe) 

(mg/L) (mg/L) (mg/L) (%) (mg/mL) 
4 

8.28 
2.10 6.18 74.64 0.062 

5 1.48 6.81 82.19 0.068 
6 1.70 6.58 79.47 0.066 

 28 
Table 2.  Manganese metal (Mn) biosorption with pH variations 29 

A
bs

or
ba

nc
e 

(A
BS

)

Days

0.180

0.160

0.140

0.120

0.080

0.060

0.040

0.000

0.020

0.100

0 5 10 15 20 25

A
bs

or
ba

nc
e (

A
BS

)

Days
0 2 4 6 10 14128 16

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.000

0.002

0.010

 

4 
 

the lag phase (adaptation period) yet showed a little to no increase in absorbance. Then on day 10 to day 20, the 1 
mixed culture of microalgae began to enter the exponential phase, as seen from a significant increase in absorbance.  2 

The cultivation of mixed cultures on liquid media contaminated with acid mine drainage showed different 3 
results. As it can be seen in Fig. 1 (b), the mixed culture of microalgae directly entered the exponential phase on 4 
day 0 to day 2 without going through the lag phase (adaptation period) first. This indicates that the mixed culture 5 
of microalgae was able to utilize metal compounds of iron and manganese contained in acid mine drainage as 6 
nutrients to support the microalgae growth. As mentioned, microalgae utilize heavy metal compounds such as 7 
boron (B), cobalt (Co), copper (Cu), iron (Fe), molybdenum (Mo), manganese (Mn), and zinc (Zn) as trace 8 
elements in the enzymatic process and cell metabolism (Leong and Chang, 2020). 9 

However, the value of maximum absorbance for the mixed culture of microalgae on the liquid media 10 
contaminated with AMD was ten times lower than the absorbance of the mixed culture of microalgae on the media 11 
that was not contaminated with AMD. The low absorbance value of the microalgae was presumed as the result of 12 
a longer exposure period to heavy metals contained in the AMD solution, which may affect the growth of 13 
microalgae. According to the preliminary study, the concentration of heavy metals and the exposure time are taken 14 
into account for the impact of the toxic nature of a heavy metal to microbes (Ouyang et al., 2012). Moreover, the 15 
blocking of important molecular functional groups such as enzymes and transport systems for nutrients and ions 16 
by heavy metals may lead to the inclination of toxicity of heavy metals to microbes (Naorbe and Serrano, 2012; 17 
Siwi et al., 2018). 18 

 19 

 20 
(a) 21 

 22 
(b) 23 

 24 
Fig. 1.  Growth curve in (a) PHM media; (b) PHM media contaminated by AMD 25 
 26 
Table 1. Iron metal (Fe) biosorption with pH variations 27 

pH 

Initial 
concentration 

(Co) 

Final 
concentration 

(Ce) 
Co−Ce Removal 

efficiency 
Adsorption 

capacity (Qe) 

(mg/L) (mg/L) (mg/L) (%) (mg/mL) 
4 

8.28 
2.10 6.18 74.64 0.062 

5 1.48 6.81 82.19 0.068 
6 1.70 6.58 79.47 0.066 

 28 
Table 2.  Manganese metal (Mn) biosorption with pH variations 29 

A
bs

or
ba

nc
e 

(A
BS

)

Days

0.180

0.160

0.140

0.120

0.080

0.060

0.040

0.000

0.020

0.100

0 5 10 15 20 25

A
bs

or
ba

nc
e (

A
BS

)

Days
0 2 4 6 10 14128 16

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.000

0.002

0.010

(b)(a)



138 Environmental Research, Engineering and Management          2024/80/3

Table 1. Iron metal (Fe) biosorption with pH variations

pH
Initial concentration (Co) Final concentration (Ce) Co–Ce Removal efficiency Adsorption capacity (Qe)

(mg/L) (mg/L) (mg/L) (%) (mg/mL)

4

8.28

2.10 6.18 74.64 0.062

5 1.48 6.81 82.19 0.068

6 1.70 6.58 79.47 0.066

Table 2. Manganese metal (Mn) biosorption with pH variations

pH
Initial concentration (Co) Final concentration (Ce) Co–Ce Removal efficiency Adsorption capacity (Qe)

(mg/L) (mg/L) (mg/L) (%) (mg/mL)

4

4.57

0.25 4.32 94.53 0.0432

5 0.25 4.32 94.53 0.0432

6 0.25 4.32 94.53 0.0432

contained in the AMD solution, which may affect the 
growth of microalgae. According to the preliminary 
study, the concentration of heavy metals and the expo-
sure time are taken into account for the impact of the 
toxic nature of a heavy metal to microbes (Ouyang et 
al., 2012). Moreover, the blocking of important molec-
ular functional groups such as enzymes and transport 
systems for nutrients and ions by heavy metals may 
lead to the inclination of toxicity of heavy metals to mi-
crobes (Naorbe and Serrano, 2012; Siwi et al., 2018).

The mixed culture of microalgae used in this research 
was contacted with a pollutant load (AMD) at the peak 
of the exponential phase on day 14. Since microalgae is 
principally attributed with the most active cell walls at 
the exponential phase, they therefore are able to carry 

out the biosorption process of iron and manganese 
metals (Wilan et al., 2019). During the biosorption pro-
cess, there was an increase in the value of acidity in the 
liquid media contaminated with AMD. The increase in 
the acidity value of the AMD contained in a liquid media 
reached the maximum value at pH 5 which was shown 
by the increase of the acidity value for 0.57 units. The 
research was subsequently continued to determine the 
maximum contact time to increase the acidity value. 
Fig. 2 shows the results of increasing acidity values   by 
the mixed culture of microalgae with the selected con-
tact time variations of 60, 120, and 180 min.

Based on Fig. 2, it can be seen that the increase in the 
acidity value of the AMD contaminated liquid media 
reached a maximum at the initial pH value of 5 and the 

Fig. 2. The increase of the acidity value with variations of (a) initial pH; (b) contact time
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contact time of 120 min, with the pH value increasing 
by 0.87 units (17.40%). In accordance with the prelimi-
nary findings, the acidity value will increase along with 
the growth of microalgae, due to the reduced dissolved 
carbon caused by photosynthesis process (Gao et al., 
2013; Yu et al., 2022). At the contact time of 180 min, 
there was a decrease in the acidity value which may be 
prompted by the heavy metal biosorption mechanism 
by microalgae. The release of initial metal ions (Na+, K+, 
Ca2+) attached to the surface of microalgae can eventu-
ally lead the hydrolysis of heavy metal ions to generate 
lower pH (Tang et al., 2003).

Moreover, this research used pH variations as an inde-
pendent variable to observe the biosorption efficiency 
of iron and manganese as shown in Table 1 and Table 2. 
The study showed that the pH variations had a signifi-
cant impact on the removal efficiency of iron (Fe), while 
changes in pH did not affect the removal efficiency of 
manganese (Mn). The optimum pH for the biosorption 
of iron (Fe) and manganese (Mn) using the mixed cul-
ture of microalgae as a biosorbent occurred at the pH 
value of 5 with the absorption efficiency of Fe 82.19% 
and manganese 94.53%. At pH 4, the efficiency of iron 
metal removal was 74.64% showing a lower value than 
the result of removal efficiency at pH 5. The low value 
of pH will lead to the competition between metal ions 
and protons to attach to the binding sites of the mi-
croalgae surface that eventually inhibits the process of 
biosorption to optimally run (Olal, 2016). Along with the 
increase in pH, the concentration of protons on the sur-
face of the microalgae biosorbent will decrease and be 

deprotonated, which generates the presence of nega-
tive functional groups on the surface of the microalgae 
biosorbent that may cause the binding of metal ions 
to the surface of the microalgae to increase and the 
biosorption process run at the optimum condition (pH 
5) (Widyaningrum et al., 2021). The removal efficien-
cy of iron at pH 6 reached a value of 79.47% showing 
a decreased value when compared with the removal 
efficiency at pH 5. Moreover, at a further increase in 
pH, iron metal will form a complex compound such as 
Fe(OH3)— and Fe(OH4)2— that cause the decrease of re-
moval efficiency (Kanamarlapudi and Muddada, 2020)

After defining the optimum pH for the biosorption pro-
cess, the research was continued to determine the 
optimum contact time. The variations of contact time 
used in this study were 60, 120, and 180 min. Table 3 
and Table 4 show the results of the biosorption of iron 
and manganese using variations in contact time. 

The variation of contact time affects the efficiency of 
iron metal removal but it may not affect the efficien-
cy of manganese metal removal. At a contact time of 
60 min, the efficiency of iron metal removal reached 
82.19%, then increased to 88.22% at a contact time 
of 120 min and reached a maximum value of 89.73% 
at a contact time of 180 min. Meanwhile, the remov-
al efficiency of manganese metal was being constant 
through the variations of contact time with a maximum 
removal efficiency of 94.53% after 60 min.

At a contact time of 60 min, the biosorption process 
took place briefly due to the availability of active sites 

Table 3. Iron metal (Fe) biosorption with contact time variations

Contact time 
(min)

Initial concentration (Co) Final concentration (Ce) Co–Ce Removal efficiency Adsorption capacity (Qe)

(mg/L) (mg/L) (mg/L) (%) (mg/mL)

60

8.28

1.475 6.805 82.19 0.0681

120 0.975 7.305 88.22 0.0731

180 0.850 7.430 89.73 0.0743

Table 4. Manganese metal (Mn) biosorption with contact time variations

Contact time 
(min)

Initial concentration (Co) Final concentration (Ce) Co–e Removal efficiency Adsorption capacity (Qe)

(mg/L) (mg/L) (mg/L) (%) (mg/mL)

60

4.57

0.25 4.32 94.53 0.0432

120 0.25 4.32 94.53 0.0432

180 0.25 4.32 94.53 0.0432
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on the surface of the microalgae. Since these sites were 
filled with metals, the biosorption process therefore 
became slower and less efficient (Bouzit et al., 2018). 
The efficiency of iron metal removal was only 1.51% at 
the contact time 120 min and 180 min. A longer con-
tact time will decrease the removal efficiency of heavy 
metal since it passes its equilibrium point that causes 
the saturation of the active sites on the surface of the 
microalgae (Nuban et al., 2021). Moreover, the addition 
of contact time reduces the level of removal efficiency 
of iron metal as shown in Fig. 3(a) at pH 4 and pH 6. 
Similar to this, Fig. 3(b) shows the removal efficiency 
of manganese metal decreased at a contact time of 
180 min and at the value of pH 6.

The optimum environmental conditions for the biosorp-
tion of iron and manganese using the mixed culture of 
microalgae Chlorella sorokiniana and Monoraphidium 
neglectum were at pH 5 with a contact time of 180 min 
resulting in an efficiency of removal of iron metal of 
89.73% and manganese metal of 94.53%. The max-
imum adsorption capacity of iron and manganese by 
the mixed culture of microalgae Chlorella sorokiniana 
and Monoraphidium neglectum were respectively 
0.0743 mg/mL and 0.0432 mg/mL.

These results were slightly different than the research 
conducted by other researchers that generated 100% of 
iron removal efficiency in 20 min of the contact time at 
the temperature of 30°C and 80 rpm stirring speed by 
utilizing microalgae Scenedesmus obliquus (Bouzit et 
al., 2020). In an iron biosorption study using microalgae 
Scenedesmus obliquus, Chlorella fusca, Chlorella sac-
charophila, Ankistodesmus braunii, and Leptolyngbya 
on liquid media with iron concentration of 50 ppm  
(10—3g/L), removal efficiency reached 99.9% in 4, 8, and 
12 days of contact time (Zada et al., 2021). A manganese 
metal removal study was also conducted and utilized 
algae Sargassum hystrix at an initial concentration of 
10 mg/L Mn(II), 10 g/L biosorbent dose and 120 min of 
contact time with removal efficiency of 85.6% (Ghasemi 
et al., 2016). Similarly, manganese removal efficiency of 
75% was achieved by using Ulva lactuca dead microal-
gae biomass at pH value of 5, 60 min of contact time, 
and stirring speed of 100 rpm (Omar, 2008).

A number of previous biosorption studies using mixed 
cultures of microalgae Chlorella sorokiniana and  
Monoraphidium neglectum showed a higher removal 
efficiency for the removal of manganese. In contrast to 
previous studies, the removal efficiency of iron metal 
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using a mixed culture of microalgae Chlorella sorok-
iniana and Monoraphidium neglectum showed a lower 
removal efficiency value and required a longer contact 
time. The difference in the value of this removal effi-
ciency may be due to the different types of biosorbents 
used, since each type of biosorbent has different ad-
sorption properties owing to the variations in dominant 
functional groups, surface area, pore size and volume 
of the biosorbent surface (Rinanti et al., 2017).

Fig. 4 shows a relationship between heavy metal con-
centration after a biosorption process (Ce) and heavy 

metal adsorption capacity (Qe) for Langmuir isotherm 
calculation, which shows only two different values for 
the Qe data series of manganese for different contact 
time and pH value resulting only in two value plots in the 
linear curve. Fig. 5 shows a relationship between Log Ce 
and Log Qe utilized in Freundlich isotherm calculation. 
The correlation coefficient (R2) for Langmuir isotherm 
was at 0.9972 for iron and 1 for manganese; meanwhile, 
the R2 value for Freundlich isotherm was at 0.9811 for 
iron and 1 for manganese. The adsorption isotherm cal-
culation results can be seen in Table 5 and Table 6. 

Fig. 4.  Langmuir isotherm curve for (a) iron and (b) manganese  
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Isotherm R2 Equation Constant Value

Langmuir 0.9972
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Fig. 5. Freundlich isotherm curve for (a) iron and (b) manganese  3 
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Table 5.  Iron metal adsorption isotherm calculation results 5 

Isotherm R2 Equation Constant Value 

Langmuir 0.9972 
Ce
Qe = 1

−4.0870.055 + Ce
0.055 Qm 0.055 

KL -4.087 

Freundlich 0.9811 Log Qe = Log 0.0726 − 1
4.859 log Ce 

Kf 0.073 
n -4.859 

 6 
Table 6  Manganese metal adsorption isotherm calculation results 7 

Isotherm R2  Constant Value 

Langmuir 1 
Ce
Qe = 1

−60.93.0.04 + Ce
0.04 Qm 0.0400 

KL -60.930 

Freundlich 1 Log Qe = Log 0.0395 −  1
−15.649 log Ce 

Kf 0.0395 
n -15.649 

of the biosorbent is homogeneous, and all binding sites are evenly distributed and have the same affinity (Sahu 22 
and Singh, 2019). The Langmuir isotherm also assumes that adsorption occurs on a homogeneous surface through 23 
a monolayer process and is in equilibrium when the adsorption rate is the same as the desorption rate (Woo et al., 24 
2021; Perwitasari et al., 2021; Awaeri et al., 2017). Biosorption kinetics shows the rate of a heavy metal binding 25 
to the surface of the biosorbent (Bulgariu and Gavrilescu, 2015). This research used the biosorption kinetics of 26 
first—order and second—order reaction kinetics. The first—order adsorption kinetics curve can be seen in Fig. 6 27 
and the second—order adsorption kinetics can be seen in Fig. 7. 28 
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 8 
The maximum biosorption capacity of iron metal (Qm) based on the Langmuir isotherm was 0.055 mg 9 

iron/mL biosorbent with the Langmuir constant (KL) of -4.087. Based on the calculations, the value of the 10 
Freudlich constant (Kf) was obtained at 0.073 with a value of n of -4.859. The maximum adsorption capacity (Qm) 11 
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The maximum biosorption capacity of iron metal (Qm) 
based on the Langmuir isotherm was 0.055 mg iron/mL 
biosorbent with the Langmuir constant (KL) of -4.087. 
Based on the calculations, the value of the Freudlich 
constant (Kf) was obtained at 0.073 with a value of n of 
-4.859. The maximum adsorption capacity (Qm) based 
on Langmuir isotherm was 0.04 mg manganese/mL 
biosorbent with Langmuir constant -60.930 mL/mg, 
while the value of Freundlich constant was 0,0395 with 
a value of n of -15.649.

The appropriate isotherm model is determined based 
on the value of the correlation coefficient (R2) which 
is closer to 1 (Tahad et al., 2018). Since the Langmuir 
isotherm R2 value was closer to 1 when compared 
with the R2 value produced by the Freundlich isotherm 
model, the appropriate model to explain the biosorp-
tion process of iron and manganese using the mixed 
culture of microalgae Chlorella sorokiniana and Mon-
oraphidium neglectum was therefore the Langmuir 
isotherm. In addition, the value of n for the Freundlich 
isotherm which was less than 0 indicated that the ad-
sorption isotherm that occurred was in accordance 
with the normal Langmuir isotherm (Jodeh et al., 2015; 
Rinanti et al., 2021).

The Langmuir isotherm assumes that each active site 
only interacts with one adsorbate molecule, the sur-
face of the biosorbent is homogeneous, and all binding 
sites are evenly distributed and have the same affinity 
(Sahu and Singh, 2019). The Langmuir isotherm also 
assumes that adsorption occurs on a homogeneous 
surface through a monolayer process and is in equilib-
rium when the adsorption rate is the same as the des-
orption rate (Woo et al., 2021; Perwitasari et al., 2021; 
Awaeri et al., 2017). Biosorption kinetics shows the 
rate of a heavy metal binding to the surface of the bio-
sorbent (Bulgariu and Gavrilescu, 2015). This research 
used the biosorption kinetics of first-order and sec-
ond-order reaction kinetics. The first-order adsorption 

kinetics curve can be seen in Fig. 6 and the second-or-
der adsorption kinetics can be seen in Fig. 7.

The value of the correlation coefficient and the reaction 
rate constant for the first and second order of iron met-
al can be seen in Table 7. The second-order R2 value at 
pH 5 was the value that is closest to the value 1, which 
was 0.9999. The Qe values obtained from the second-or-
der calculation for pH 4, 5, and 6 were 0.0641 mg/mL, 
0.0779 mg/mL, and 0.0781 mg/mL, respectively. The sec-
ond-order Qe value was closer to the actual Qe value at 
each of these pHs. The values of the reaction rate constant 
for pH 4, 5, and 6 obtained based on the second-order re-
action in sequence were 21.513 mL/mg.min, 1.5254 mL/
mg.min, and 1.5147 mL/mg.min. Based on that, it can be 
concluded that the biosorption kinetics of iron metal was 
in accordance with the second-order reaction kinetics. 
Second-order biosorption kinetics assumes that the rate 
of solute adsorption is proportional to the available sites 
on the adsorbent (William et al., 2019).

The results of the calculation of the manganese ad-
sorption kinetics can be seen in Table 8. The value of 
Qe and the first-order reaction rate constant at pH 4 
and 5 could not be determined because there was no 
change in the adsorption capacity with the addition of 
contact time. When compared with the first-order, the 
second-order R2 value was closer to 1 for all pH values. 
The Qe values obtained from second-order calculations 
for pH 4, 5, and 6 were 0.0432 mg/mL, 0.0432 mg/mL, 
and 0.0425 mg/mL, respectively. The results of the 
second-order Qe calculation were closer to the actual 
Qe value in the manganese metal biosorption process. 
The second-order reaction rate constant at pH 6 was 
17.0578 mL/mg.minute, while the second-order reac-
tion rate constant for pH 4 and 5 could not be deter-
mined because the intercept value obtained based on 
the adsorption kinetics graph was 0. Based on that, the 
adsorption kinetics which related to the biosorption 
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Fig. 6. First-order adsorption kinetics curve for (a) iron and (b) manganese

Table 7. Calculation results of iron metal adsorption kinetics

Order reaction pH R2 Qe (mg/mL) Reaction rate constant

First

4 0.0066 0.0335 0.0047 /min

5 0.5290 0.0001 0.0423 /min

6 0.8288 0.0004 0.0405 /min

Second

4 0.9982 0.0641 21.513 mL/mg.min

5 0.9999 0.0779 1.5254 mL/mg.min

6 0.9509 0.0781 1.5147 mL/mg.min
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kinetics of manganese metal using the mixed culture of 
microalgae Chlorella sorokiniana and Monoraphidium 
neglectum was the second-order adsorption kinetics.

The results of this study were expected to be imple-
mented on a larger scale. For this reason, a pilot scale 

implementation design was carried out to treat the 50% 
of AMD obtained from one of the coal mines in Indonesia 
which has a discharge of 146.88 m3/day using a mixed 
culture of microalgae biosorbent Chlorella sorokiniana 
and Monoraphidium neglectum at its optimum pH of 5 
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Table 8. Calculation results of manganese metal adsorption kinetics

Order reaction pH R2 Qe (mg/mL) Reaction rate constant

First

4 — — —

5 — — —

6 0.7500 158.745 0.0633/min

Second

4 1.0000 0.04320 —

5 1.0000 0.04320 —

6 0.9999 0.04250 17.0578 mL/mg.min

Fig. 7. Second-order adsorption kinetics curve for (a) iron and (b) manganese
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calculation were closer to the actual Qe value in the manganese metal biosorption process. The second—order 1 
reaction rate constant at pH 6 was 17.0578 mL/mg.minute, while the second—order reaction rate constant for pH 2 
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using a bioreactor (Indra et al., 2014). The treatment of 
AMD using a bioreactor requires a solution of AMD with-
out suspended solids; thus, it requires a pre-treatment 
before pouring AMD into the bioreactor. Given the exist-
ing data of the concentration of iron and manganese of 
AMD in one of the coal mines in East Kalimantan, the 

respective value concentrations were 8.28 mg/L and 
4.57 mg/L (Rizki, 2013). However, the concentration 
values exceeded the quality standard value stipulated 
in the Decree of the Minister of the Environment of the 
Republic of Indonesia No. 133 of 2003, which is 7 mg/L 
for iron metal and 4 mg/L for manganese metal.
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Table 9 shows a pilot scale design and calculations; and 
the drawing of a pilot scale bioreactor design can be 
seen in Fig. 8.

Table 9. Pilot scale design calculation

No. Parameters Value Unit

1. pH 5.00 —

2. Processing debit (Q) 73.44 m3/day

3. Processing time (t) 22.95 min

4. Pilot scale AMD volume (VAMD) 1.17 m3

5. Pilot scale total culture volume (Vk) 4.68 m3

6. Pilot scale reactor volume (VR) 5.85 m3

7. Reactor length (P) 5.00 m

8. Reactor width (L) 1.00 m

9. Reactor height (T) 1.25 m

10. Freeboard 0.31 m

11. Stirring number 4 Pieces

12. Stirring speed 4.97 rpm

13. Required biosorbent volume (Vbiosorbent) 0.066 m3

Fig. 8. Pilot scale bioreactor design
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Conclusions 11 

 12 
The mixed culture of microalgae Chlorella sorokiniana and Monoraphidium neglectum was able to grow in 13 

AMD—contaminated media and reached a peak exponential phase on day 2. The optimum environmental 14 
conditions for the biosorption of iron and manganese heavy metals in AMD using a consortium of microalgae 15 
Chlorella sorokiniana and Monoraphidium neglectum were at pH 5 and a contact time of 180 min with a maximum 16 
removal efficiency of 89.73% for iron and 94.53% for manganese. The isotherm adsorption model that was suitable 17 
to describe the biosorption process of this study was the Langmuir isotherm model, which indicated that the 18 
biosorption process occurred on a homogeneous surface through a monolayer process. Meanwhile, second—order 19 
reaction kinetics with the Qe value from the calculation results was close to the actual Qe value, which illustrated 20 
that the solute adsorption rate was proportional to the available sites on the adsorbent.  21 
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Conclusions
The mixed culture of microalgae Chlorella sorokinia-
na and Monoraphidium neglectum was able to grow in 
AMD-contaminated media and reached a peak expo-
nential phase on day 2. The optimum environmental 
conditions for the biosorption of iron and manganese 
heavy metals in AMD using a consortium of microal-
gae Chlorella sorokiniana and Monoraphidium neglec-
tum were at pH 5 and a contact time of 180 min with 
a maximum removal efficiency of 89.73% for iron and 
94.53% for manganese. The isotherm adsorption mod-
el that was suitable to describe the biosorption process 
of this study was the Langmuir isotherm model, which 
indicated that the biosorption process occurred on a 
homogeneous surface through a monolayer process. 
Meanwhile, second-order reaction kinetics with the Qe 
value from the calculation results was close to the ac-
tual Qe value, which illustrated that the solute adsorp-
tion rate was proportional to the available sites on the 
adsorbent. 
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