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The Bali Tourism area represents complex environments where human activities intersect with natural landscapes, 
resulting in diverse land use land cover (LULC) patterns. However, understanding the dynamics of LULC in these 
areas and its interaction with land surface temperature (LST) remains a challenge. This study addresses this gap 
by investigating LULC mapping in urban tourist destinations and its influence on LST variations. The research 
problem focuses on exploring the relationship between various land cover types and LST variations. The main 
objective is to assess the interaction of LULC variations with LST in urban tourist environments. To achieve this 
goal, an integrated approach combining remote sensing techniques and machine learning will be employed. LULC 
mapping will utilize support vector machine (SVM) techniques with datasets sourced from multi-channel data, and 
spectral indices such as enhanced built-up and bareness index (EBBI) and normalized differences vegetation index 
(NDVI) derived from Landsat 9. The findings present a vivid overview of the research area, where built-up areas 
dominate, and spanning 108.61 km². Other land cover classifications include rice fields/grasslands, plantation/per-
ennial plants, barren land, mangrove forests, shrublands, and water bodies, accurately mapped with high precision 
(overall accuracy = 88.52% and Kappa = 81%). Maximum LST values peak in built-up and barren areas, reaching 
29.89°C and 29.28°C, respectively, while other land cover types exhibit comparatively lower values. Our analysis of 
the spectral index used in LULC classification uncovers a positive correlation with EBBI (R2 = 37.78%) and a negative 
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correlation with NDVI (R2 = 10.69%, based on a substantial sample size of 67 869 pixels. We strongly urge future 
researchers to leverage high-resolution data for localized urban studies and stress the critical importance of en-
forcing stringent spatial planning regulations to safeguard green spaces, thus ensuring ecological equilibrium for 
future generations.

Keywords: land use land cover (LULC), land surface temperature (LST), remote sensing, environmental, urban 
tourism.

Introduction
Remote sensing plays a significant role in earth obser-
vation, environmental monitoring, agriculture, disaster 
management, and other fields (Bauer, 2020; García-
Berná et al., 2020; Kaku, 2019). A prominent focus in 
remote sensing at the close of the 21st century is mon-
itoring carbon stock/sequestration and climate change 
(Xiao et al., 2019; Yang et al., 2013). Anomalies charac-
terize climate change through abrupt fluctuations in the 
Earth’s surface temperature over short periods. Climate 
change affects temperature increases, such as changes 
in rain and snow patterns that fall to the surface, weather 
and seasons, and rising sea levels (Bellard et al., 2012). 
These changes can occur directly or indirectly as a result 
of human activities. Surface temperature changes can be 
assessed through in situ measurements or by estimation 
using remote sensing techniques. On a technical scale, 
remote sensing techniques provide time efficiency and 
the results close to in situ measurements with the right 
algorithm. Numerous thermal infrared (TIR) sensors 
are available with varying resolutions, including NOAA 
AVHRR, MODIS, ASTER, and, sensors from the Landsat 
TM/ETM+/OLI series (Kalma et al., 2008; Kuenzer et al., 
2015; Weng, 2009). In our study, we use Landsat 9 sat-
ellite data for computing land surface temperature (LST) 
and detecting land use land cover in 2022. However, as of 
the end of the 21st century, no researchers have utilized 
remote sensing data derived from the Landsat 9 satellite. 
Landsat 9, an Earth observation satellite launched into 
space on September 27, 2021, from Launch Complex-3E, 
is equipped with Operational Land Imager 2 (OLI-2) and 
Thermal Infrared Sensor 2 (TIRS-2). OLI-2 captures 
Earth’s surface observations in the near-infrared and 
short-wave bands, while TIRS-2 measures the thermal 
infrared radiation, or heat, emitted from the Earth and its 
surface.

Using remote sensing techniques efficiently measures 
the LST. Obtaining surface temperatures using satel-
lite imagery is essential for analyzing global warming 

and climate change (Maimaitiyiming et al., 2014). Esti-
mating the LST of objects on Earth becomes essential 
to assess the contribution of each object to the sur-
face temperature. This is because each object or land 
cover has a different temperature. The change into 
an object with a high thermal capacity will cause the 
temperature to increase, as seen in urban or mining 
areas. Conversely, areas covered by forests or vege-
tation will experience temperature decreases. There is 
a relationship between green open areas and surface 
temperature in an area. The development of the area 
into built-up land contributes to increasing LST in ur-
ban areas and triggering climate change (Arshad et al., 
2022; Dewan et al., 2021; Siddique et al., 2020). Built-up 
land includes not only a residential area but also roads 
connecting regions, which can lead to temperature in-
creases. The increase in LST due to the development of 
urban areas has reached 2.26°C (Nurwanda and Honjo, 
2020) to 8°C (Nurwanda and Honjo, 2020). The extent 
of temperature increase depends on location, season, 
and the area of land developed in urban settings. 

This research case study was conducted in tourism and 
urban areas, specifically Denpasar and Kuta. Denpasar 
serves as the capital city center of Bali Province, while 
Kuta is renowned as a central hub for tourism. Previous 
researchers have highlighted Denpasar city’s suscepti-
bility to flooding and soil infiltration disturbances due to 
the prevalence of built-up land (Trigunasih and Saifulloh, 
2022). Another issue plaguing this urban area is the con-
sistent expansion of built-up land, resulting in air quality 
pollution (Sunarta and Saifulloh, 2022b, 2022a) and an 
annual increase in LST of 1°C between 2000 and 2020, 
as observed from Terra MODIS images (Sunarta et al., 
2022). The development process must address the grow-
ing urban population and influx of tourists. Land use con-
version from vegetated to non-vegetated areas can sig-
nificantly impact site surface temperatures and, directly 
or indirectly, contribute to global warming phenomena.
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Updating LULC mapping with the latest data derived 
from Landsat 9 is crucial for completing thematic map 
databases, particularly for local governments man-
aging tourism areas. A significant challenge in LULC 
mapping is time-consuming drawing of boundaries, 
which requires a lot of workers to complete large ar-
eas (Nugraha et al., 2022). To address this challenge, 
we employ digital classification with a machine learn-
ing approach (Talukdar et al., 2020; Wang et al., 2022), 
specifically the SVM algorithm, which has demonstrat-
ed high accuracy across various satellite sensors, in-
cluding Landsat TM, ETM+, OLI, and freely available 
imagery such as Sentinel 1/2, achieving accuracy rates 
exceeding 80% (Ghayour et al., 2021; Feizizadeh et al., 
2023; Dagne et al., 2023). Incorporating LST interaction 
provides additional insights into how different objects 
on the Earth’s surface respond to urban thermal condi-
tions. These insights can guide the implementation of 
greening initiatives in specific tourism areas, thereby 
enhancing the comfort of tourists visiting Bali.

Fig. 1. Research site in Denpasar and Kuta, Bali Province  
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Methods

Study area
The research was conducted in the urban area of Den-
pasar and the tourism area of Kuta. Denpasar city is 
divided into four sub-districts (i.e., North Denpasar, 
East Denpasar, West Denpasar, and South Denpasar). 
The Kuta tourism area is administratively included in 
Badung Regency. For this study, only Kuta and North 
Kuta districts were selected. Both areas have experi-
enced rapid tourism development, as evidenced by the 
increasing number of tourists and the expansion of 
built-up land. Geographically, the research case study 
is located at 115°10’00” E – 115°13’00” E and 08°36’00” 
S – 08°45’00” S. Based on biophysical conditions, the 
research area has an altitude of 0–50 meters above 
sea level, with a predominantly flat slope (0–8%). This 
area is located on the southern coast of Bali Province  
(Fig. 1).
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Bali’s allure as a coastal tourism destination is unde-
niable, drawing a steady stream of international visi-
tors year after year. However, beneath its picturesque 
landscapes lies a complex interplay between land use 
land cover (LULC) and the consequential land surface 
temperature (LST). Understanding these intricate re-
lationships is paramount for sustainable development 
and effective urban planning in the region.

The count of foreign visitors identified at Ngurah Rai 
Airport and the surrounding Harbor exhibited an annual 
increment of 0.95% from 2010 to 2019 (Central Bureau 
of Statistics, 2023). This steady growth reflected the 
flourishing tourism sector of Bali, positioning it prom-
inently on the global stage. However, the advent of the 
Covid-19 pandemic precipitated a significant downturn, 
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impacting global destinations, including Bali’s vibrant 
tourism sector (Sunarta and Saifulloh, 2022), with a 
pronounced dip of 11.98% in 2020 (Fig. 2). This stag-
gering statistical shift underscores the critical need 
for comprehensive analysis, particularly regarding the 
LULC map and its associated LST dynamics.

Concurrently, recent investigations within the same do-
main have delved into the expanding footprint of built-
up areas. These studies reveal a noteworthy expansion 
in built-up land from 2013 to 2021, witnessing an in-
crease of 2.62 km², altering the landscape from 177.79 
km² to 120.41 km² (Adnyana et al., 2023). This evolving 
urbanization trend accentuates the imperative of un-
derstanding how land transformation impacts LULC 
mapping and subsequent LST variations.

Tools and materials
Field data collection for training, testing, and validating 
our LULC map involved conducting field surveys using 
a Garmin Montana 680 GPS device, alongside manual 
digitization in the Google Earth Pro application. Satel-
lite image processing was performed using the open-
source QGIS 3.28.4 LTR application with the SCP Plugin 
library, and its machine learning classification utilized 
the Detzaka library. The primary data source for this 
study is the spectral bands from the Landsat 9 satellite. 
Remote sensing data collection was obtained from the 
USGS Earth Explorer Website (USGS, 2023). We selected 
a Landsat 9 image with minimal cloud cover to reduce 
image processing noise. The Landsat 9 data with the ID 
LC09_L1TP_116066_20220325_20220325_02_T1 was 

acquired on May 25, 2022. This image was captured in 
the Path 116 and Row 066 regions. Overall, the image 
scene used has less than 10% cloud cover, specifically 
in the tourism area at the time of the recording date, en-
suring minimal bias during satellite imagery processing.

The instruments on Landsat 9 are enhanced replicas 
of Landsat 8, which already provides Earth obser-
vation data. The satellite carries two science instru-
ments, the Operational Land Imager 2 (OLI-2) and the 
Thermal Infrared Sensor 2 (TIRS-2). OLI-2 captures 
observations of the Earth’s surface in the near-infra-
red, near-infrared, and short-wave bands, and TIRS-
2 measures the thermal infrared radiation, or heat, 
emitted from the Earth’s surface. Landsat 9 improve-
ments include a higher radiometric resolution for OLI-2 
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Bands Wavelength (µm) Resolution (meters)

Band 1 – Coastal 
aerosol

0.43–0.45 30

Band 2 – Blue 0.45–0.51 30

Band 3 – Green 0.53–0.59 30

Band 4 – Red 0.64–0.67 30

Band 5 – Near
Infrared (NIR)

0.85–0.88 30

Band 6 – SWIR 1 1.57–1.65 30

Band 7 – SWIR 2 2.11–2.29 30

Band 8 – 
Panchromatic

0.50–0.68 15

Band 9 – Cirrus 1.36 –1.38 30

Band 10 – Thermal
infrared (TIRS) 1

10.60–11.19 100

Band 11 – Thermal  
infrared (TIRS) 2

11.50–12.52 100

Table 1. Specification of Landsat 9 instrument

Data Analysis

Land use land over mapping
The mapping of LULC involves integrating remote 
sensing and machine learning. The images utilized 
for machine learning training and testing contain sin-
gle-band spectral dataset (B2, B3, B4, B5, B6, and B7). 
To enhance the training image, we included spectral 
indices, namely NDVI and the enhanced built-up and 
bareness index (EBBI). EBBI can sensitively detect the 
difference between built and bare land, which has been 
found by As-syakur et al. (2012). The researcher quan-
tified EBBI using NIR, SWIR, and TIRS channels (Eq. 1).

Source: USGS, 2023

The incorporation of a spectral index to the image aims 
to obtain the best LULC detection results, especially in 
urban areas dominated by built-up land. In this study, 
we classify LULC into seven types (i.e., built-up land, 
bare land, rice fields/grass, plantation/perennial plant, 
mangrove forest, shrubs, and water body). LULC vari-
ation data were sourced from the Geospatial Informa-
tion Agency (BIG) in 2018, which will be updated with 
Google Earth imagery in 2022. The machine learning 
algorithm used is a support vector machine (SVM).

Training data were prepared and validated through the 
QGIS 3.28.4 LTR application. The training data consist-
ed of 400 polygons, with a proportion of 70% for train-
ing and 30% for testing to run the SVM algorithm. The 
accuracy test utilized validation data comprising 320 
points, strategically distributed. To maintain the in-
dependence of the model, we refrained from splitting 
the training/testing data for the validation process. In-
stead, the validation sample for the model was carried 
out on different data by referring to the high-resolution 
image of Google Earth in 2022.  
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(14-bit quantization increased from 12-bit for Landsat 
8) which allows the sensor to detect more delicate dif-
ferences, especially in darker areas such as bodies of 
water and densely vegetated forests. In addition to the 
improved OLI-2, TIRS-2 has significantly reduced light 
stray compared with the Landsat 8 Thermal Infrared 
Sensor (TIRS), allowing for better atmospheric correc-
tion and more accurate LST measurements. Specifica-
tions of Landsat 9 data can be seen in Table 1.
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The accuracy test was conducted using the SCP Plugin 
in the QGIS 3.28.4 LTR application. The output accuracy 
metrics include standard error (SE), producer accura-
cy (PA), user accuracy (UA), overall accuracy (OA), and 
Kappa. These metrics provide valuable insights into 
the performance of the classification model, assess-
ing both its ability to correctly classify land cover types 
(PA and UA) and its overall effectiveness in accurately 
mapping the landscape (OA and Kappa).

Quantifications of land surface temperature (LST)
Quantification of LST was based on the formula and 
stages described in the sub-chapter. The theoretical 
understanding of each indicator in the LST calculation 
has been conveyed by Dash et al. (Dash et al., 2002). 
Spectral radiance correction is a correction that con-
verts pixel value to spectral radiance value or top of 
atmosphere radiance value (Eq. 3). Our LST calculation 
utilizes both Band 10 (10.60–11.19 µm) and Band 11 
(11.50–12.52 µm), which are then averaged to obtain 
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Where: Tb – TOA Brightness temperature (Kelvin); 
Lλ – TOA spectral radiance (watts / (m2 x srad x µm));  
K1 – Band specific thermal conversion constant; K2 – 
Band specific thermal conversion constant.

The normalized difference vegetation index (NDVI) is a 
widely utilized vegetation index for calculating surface 
temperature. It serves as an alternative method for es-
timating land surface emissivity. NDVI utilizes meas-
urements from red and infrared wavelengths (bands 4 
and 5), as depicted in Eq. 6.
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The last step is LST quantification based on the data 
derivatives that have been calculated in the previous 
process. The calculation of the LST value can be seen 
in Eq. 1.9.
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Where:  Tb – Temperature brightness (°C); λ – Central 
wavelength of emitted radiance; ε – Emissivity; Ln – 
mathematical function for the natural logarithm.
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Results and Discussion

Mapping of land use land cover
This sub-chapter presents the results of the LULC 
classification in tourism areas. Before delving into the 
results, we show the spectral indices of the enhanced 
built-up and bareness index (EBBI) and the normalized 
difference vegetation index (NDVI). Both spectral indi-
ces are utilized as input stacking images with other sin-
gle bands. The minimum, maximum, and mean values, 
and the standard deviations are as follows: −0.72, 0.93, 
0.51, and 0.19 (Table 2). NDVI represents the greenness 
level and tan vegetation, so the higher value represents 
the condition of dense vegetation cover on the Earth’s 
surface (Weng et al., 2004). The dark blue zone is 
high-density vegetation that is dominantly found in the 
northern and southern regions (Fig. 3a). For EBBI, the 
minimum, maximum, mean, and standard deviation 

values are −0.11, 0.79, 0.07, and 0.06, respectively 
(Table 2). EBBI is inversely related to NDVI, as higher 
spectral index values indicate areas with high building 
density, including bare land. The spatial distribution of 
EBBI reveals that high values dominate the case study 
area, as indicated by the orange and red zones (Fig. 3b).

In our scientific article, the LULC types encompass 
built-up areas, bare land, rice fields/grass, plantation/
perennial plants, mangrove forests, shrubs, and water 
bodies. Built-up land use comprises housing, shops, 
offices, hotels, supermarkets, road networks, parking 
lots, and airports. Bare land areas include stretches of 
beach sand, landfill areas, and other vegetation-free 
zones. Rice fields are characterized by rice cultivation, 
alongside crops like corn, vegetables, and other agri-
cultural commodities, including grasslands. Planta-
tions/perennial plants feature dense canopy cover and 
annually replenished plants with distinct woody char-
acteristics. This category encompasses green open 
spaces, roadside trees, and shade trees within hotel 
premises.

In our research case study, mangrove forests are spa-
tially clustered, facilitating easy identification. They 
are closely associated with water bodies, predomi-
nantly situated in the southern coastal region. Shrubs 

Table 2. Statistical value of spectral index

Parameters Min Max Mean SD

NDVI −0.72 0.93 0.51 0.19

EBBI −0.11 0.79 0.07 0.06

Fig. 3. Spatial distribution of EBBI (a) and NDVI (b)
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In our scientific article, the LULC types encompass built-up areas, bare land, rice fields/grass, 4 
plantation/perennial plants, mangrove forests, shrubs, and water bodies. Built-up land use comprises housing, 5 
shops, offices, hotels, supermarkets, road networks, parking lots, and airports. Bare land areas include stretches of 6 
beach sand, landfill areas, and other vegetation-free zones. Rice fields are characterized by rice cultivation, 7 
alongside crops like corn, vegetables, and other agricultural commodities, including grasslands. 8 
Plantations/perennial plants feature dense canopy cover and annually replenished plants with distinct woody 9 
characteristics. This category encompasses green open spaces, roadside trees, and shade trees within hotel 10 
premises. 11 

In our research case study, mangrove forests are spatially clustered, facilitating easy identification. They are 12 
closely associated with water bodies, predominantly situated in the southern coastal region. Shrubs represent areas 13 
with sparse annual vegetation density. Water bodies encompass marine areas, ponds, and other water bodies. The 14 
spectral signature depicted in Fig. 4 illustrates the interplay between wavelength and spectral values following 15 
atmospheric correction using the dark object subtraction method, specifically targeting channels B2 (Blue), B3 16 
(Green), B4 (Red), B5 (NIR), B6 (SWIR 1), and B7 (SWIR 2). Additionally, EBBI and NDVI were incorporated 17 
into the stacked image. 18 

In the R-G-B channels, built-up and bare land objects exhibited the highest spectral values. Conversely, 19 
vegetated objects displayed elevated spectral values in the NIR channel, indicating a strong correlation with NDVI. 20 
Water bodies and built-up land showed minimal spectral responses in the NIR channel and vegetation index. 21 
SWIR-1 and SWIR-2 channels, alongside EBBI, demonstrated sensitivity to built-up land objects, characterized 22 
by their heightened spectral values (Fig. 4). Conversely, they displayed lower sensitivity to vegetated objects, as 23 
evidenced by their diminished spectral values. This analysis highlights the distinct spectral characteristics of 24 
different land cover types in the study area. The correlation between spectral signatures, land cover indices, and 25 
various remote sensing channels offers valuable insights for land cover classification and monitoring, particularly 26 
in urban and vegetated environments. 27 
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represent areas with sparse annual vegetation densi-
ty. Water bodies encompass marine areas, ponds, and 
other water bodies. The spectral signature depicted in 
Fig. 4 illustrates the interplay between wavelength and 
spectral values following atmospheric correction using 
the dark object subtraction method, specifically target-
ing channels B2 (Blue), B3 (Green), B4 (Red), B5 (NIR), 
B6 (SWIR 1), and B7 (SWIR 2). Additionally, EBBI and 
NDVI were incorporated into the stacked image.

In the R-G-B channels, built-up and bare land objects 
exhibited the highest spectral values. Conversely, veg-
etated objects displayed elevated spectral values in the 
NIR channel, indicating a strong correlation with NDVI. 

Water bodies and built-up land showed minimal spec-
tral responses in the NIR channel and vegetation index. 
SWIR-1 and SWIR-2 channels, alongside EBBI, demon-
strated sensitivity to built-up land objects, characterized 
by their heightened spectral values (Fig. 4). Conversely, 
they displayed lower sensitivity to vegetated objects, as 
evidenced by their diminished spectral values. This anal-
ysis highlights the distinct spectral characteristics of dif-
ferent land cover types in the study area. The correlation 
between spectral signatures, land cover indices, and var-
ious remote sensing channels offers valuable insights for 
land cover classification and monitoring, particularly in 
urban and vegetated environments.

Fig. 4. The spectral signatures in various objects
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The average standard error (SE) value for each LULC is 0.01. Based on the producer accuracy (PA) value, 3 
the plantation/perennial plant type LULC has the lowest value of 56.98%, and others have a value of > 80%. User 4 
accuracy (UA) < 80% was found in bare land (50%), shrubs (55.56%), and perennial plants (72.73%). The highest 5 
Kappa hat values were found in water bodies (1.00), mangrove forests (1.00), and built-up land (0.91), while other 6 
LULC < 0.8. Several factors contribute to the low accuracy of this land cover classification. One significant factor 7 
is the spectral bias between cover types, leading to misclassification. For instance, bare land areas exhibit spectral 8 
variations similar to built-up land, while large expanses of rice fields may contain unplanted areas (bare land) at 9 
varying elevations, further complicating the classification process and reducing accuracy. Additionally, in 10 
shrubland areas, the spectral values of all parameters used in the LULC model tend to exhibit similar patterns and 11 
values. Furthermore, the differentiation of vegetation types within the study area adds complexity, contributing to 12 
decreased accuracy. 13 

The overall accuracy of the LULC model with the SVM algorithm is 88.52%, with a Kappa value of 81% 14 
(Table 3). The producer’s accuracy value serves as a thematic assessment, which shows the level of truth of the 15 
classification results against conditions in the field. We replace the field data with reference to the Google Earth 16 
Imagery in 2022. User accuracy describes the accuracy of the classification results for all identifiable objects. Total 17 
accuracy represents the value of the total accuracy of the appearance of objects that are correct on the classification 18 
map with the field. The Kappa index value considers the classification process error factor, so the Kappa index 19 
value is lower than the total accuracy value, which only finds the correct data between the classification results 20 
and field conditions. Total accuracy describes the value of the total accuracy of the appearance of objects that are 21 
correct on the classification map with the field. An 81% Kappa value indicates that the digitally mapped LULC 22 
using SVM is classified as very high. Kranjčić et al. (2019) state that the range of Kappa values is very high, with 23 
values exceeding 80%, falling into the high category, followed by 61–80% in the moderate category, and 41–60% 24 
in the low category. 25 

 26 
Table 3. Accuracy assessment of LULC types based on SVM algorithm 27 

No LULC types SE PA (%) UA (%) Kappa hat OA (%) Kappa (%) 

1 Built-up land 0.01 94.36 96.22 0.91 

88.52 81.00 

2 Bare land 0.01 89.64 50.00 0.48 

3 Rice field/grass 0.01 82.27 83.08 0.78 

4 Plantation/perennial 
plant 0.01 56.98 72.73 0.71 

5 Mangrove forest 0.00 85.99 100 1.00 

6 Shrubs 0.00 100.00 55.56 0.55 

7 Water body 0.00 100.00 100 1.00 

 28 
The results of the LULC classification reveal that built-up areas dominate, covering an expanse of 108.61 29 

km². Following closely are rice fields/grass, sprawling over 42.37 km², followed by plantation/perennial plants 30 
(11.95 km²), bare land (10.04 km²), mangrove forests (6.84 km²), shrubs (4.78 km²), and water bodies (2.69 km²), 31 
as depicted in Fig. 5. The spatial distribution of built-up land is delineated by the orange zone, predominantly 32 
saturating urban and tourism hubs (Fig. 6a). Verdant stretches are characterized by green and dark green hues, 33 

The average standard error (SE) value for each LULC 
is 0.01. Based on the producer accuracy (PA) value, 
the plantation/perennial plant type LULC has the low-
est value of 56.98%, and others have a value of > 80%. 
User accuracy (UA) < 80% was found in bare land 
(50%), shrubs (55.56%), and perennial plants (72.73%). 
The highest Kappa hat values were found in water bod-
ies (1.00), mangrove forests (1.00), and built-up land 
(0.91), while other LULC < 0.8. Several factors contrib-
ute to the low accuracy of this land cover classifica-
tion. One significant factor is the spectral bias between 
cover types, leading to misclassification. For instance, 
bare land areas exhibit spectral variations similar 
to built-up land, while large expanses of rice fields 
may contain unplanted areas (bare land) at varying 

elevations, further complicating the classification pro-
cess and reducing accuracy. Additionally, in shrubland 
areas, the spectral values of all parameters used in 
the LULC model tend to exhibit similar patterns and 
values. Furthermore, the differentiation of vegetation 
types within the study area adds complexity, contribut-
ing to decreased accuracy.

The overall accuracy of the LULC model with the SVM al-
gorithm is 88.52%, with a Kappa value of 81% (Table 3).  
The producer’s accuracy value serves as a thematic as-
sessment, which shows the level of truth of the clas-
sification results against conditions in the field. We re-
place the field data with reference to the Google Earth 
Imagery in 2022. User accuracy describes the accuracy 
of the classification results for all identifiable objects. 
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Total accuracy represents the value of the total accu-
racy of the appearance of objects that are correct on 
the classification map with the field. The Kappa index 
value considers the classification process error factor, 
so the Kappa index value is lower than the total accu-
racy value, which only finds the correct data between 
the classification results and field conditions. Total ac-
curacy describes the value of the total accuracy of the 
appearance of objects that are correct on the classifica-
tion map with the field. An 81% Kappa value indicates 
that the digitally mapped LULC using SVM is classified 
as very high. Kranjčić et al. (2019) state that the range of 
Kappa values is very high, with values exceeding 80%, 
falling into the high category, followed by 61–80% in the 
moderate category, and 41–60% in the low category.

The results of the LULC classification reveal that built-
up areas dominate, covering an expanse of 108.61 km². 
Following closely are rice fields/grass, sprawling over 
42.37 km², followed by plantation/perennial plants (11.95 
km²), bare land (10.04 km²), mangrove forests (6.84 km²), 
shrubs (4.78 km²), and water bodies (2.69 km²), as de-
picted in Fig. 5. The spatial distribution of built-up land is 
delineated by the orange zone, predominantly saturating 
urban and tourism hubs (Fig. 6a). Verdant stretches are 
characterized by green and dark green hues, indicating 
rice fields/grass, plantation/perennial plants, shrubs, 
and mangrove forests. Additionally, patches of bare land 
and water bodies dot the southern coastal region (Fig. 6).

Assessing the impact of various LULC on LST 
In the lowest elevation research locations, the LST was 
found to be 19.27°C in water bodies and rice fields, with 

Table 3. Accuracy assessment of LULC types based on SVM 
algorithm

No LULC types SE PA (%) UA (%)
Kappa 

hat
OA (%)

Kappa 
(%)

1
Built-up 

land
0.01 94.36 96.22 0.91

88.52 81.00

2 Bare land 0.01 89.64 50.00 0.48

3
Rice field/

grass
0.01 82.27 83.08 0.78

4
Plantation/
perennial 

plant
0.01 56.98 72.73 0.71

5
Mangrove 

forest
0.00 85.99 100 1.00

6 Shrubs 0.00 100.00 55.56 0.55

7 Water body 0.00 100.00 100 1.00

Fig. 5. Graph of difference LULC types and coverage area

 

indicating rice fields/grass, plantation/perennial plants, shrubs, and mangrove forests. Additionally, patches of bare 1 
land and water bodies dot the southern coastal region (Fig. 6). 2 

 3 

 4 
Fig. 5. Graph of difference LULC types and coverage area 5 

 6 
Assessing the impact of various LULC on LST  7 

 8 
In the lowest elevation research locations, the LST was found to be 19.27°C in water bodies and rice fields, 9 

with mangrove forests registered 19.42°C. The highest maximum LST values were observed in built-up areas and 10 
bare land, with 29.89°C and 29.28°C, respectively. Other LULC types, such as plantations/perennial plants, 11 
exhibited relatively high maximum values of 27.87°C and 27.14°C, followed by shrubs, mangrove forests, and 12 
water bodies, with LST values of 24.90°C, 24.60°C, and 23.97°C, respectively. 13 

The highest mean LST value was found in built-up areas at 25.50°C, followed by other land cover types, 14 
including bare land, rice fields/grass, plantations/perennial plants, shrubs, mangroves, and water bodies, with 15 
respective values of 25.50°C, 24.97°C, 24.62°C, 24.22°C, 22.71°C, 21.97°C, and 21.39°C (Table 4). Based on 16 
their standard deviation values, water bodies, bare land, rice fields/grass, and built-up areas exhibited relatively 17 
high variability, with values of 1.27, 1.13, 1.03, and 0.90, respectively. 18 

These findings suggest that these four land cover types exhibit high variability in their interactions with LST. 19 
For example, in water body areas with varying water depths and sediment presence, diverse interactions with LST 20 
were observed. Similarly, built-up areas, bare land, and rice fields/grass displayed varying characteristics in 21 
specific regions, including differences in vegetation density and non-vegetated areas. For instance, in rice field 22 
areas, both bare land zones and waterlogged rice areas were identified, resulting in relatively varied responses to 23 
LST. 24 
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LULC Min Max Mean Std 
Built-up land 20.82 29.89 25.50 0.90 

Bare land 20.01 29.28 24.97 1.13 

Rice field/grass 19.23 27.14 24.62 1.03 

Shrubs 20.72 24.90 22.71 0.58 

Plantation/perennial plant 21.89 27.87 24.22 0.78 

Mangrove forest 19.42 24.60 21.97 0.78 

Water body 19.23 23.97 21.39 1.27 
 27 

The spatial distribution of built-up land, as observed in accordance with the most recent advancements in 28 
urban ecology and land cover analysis, prominently extends across urban regions and tourist destinations while 29 
intriguingly encompassing the eastern and southwestern coastal regions. In the southern coastal sector of urban 30 
zones, an intriguing interplay of land cover types characterized by notably high vegetation density, such as thriving 31 
mangrove forests and robust shrubbery, emerges. Spatially, the Kuta tourism area features an expanded runway 32 
and parking lot within the vicinity of Ngurah Rai International Airport, where bare land is delineated as a gray 33 
zone on the map. The surrounding region is predominantly characterized by built-up land in the form of an airplane 34 
runway, while the area within the airport premises comprises a grassland landscape. Furthermore, the verdant 35 
tapestry of additional vegetative covers, including rice fields/grass and plantations, adorns the fringes of urban and 36 
tourist areas. This nuanced arrangement has been notably accentuated in light of recent research, as the central 37 
urban sectors have become increasingly synonymous with a prevailing dominance of built-up land (Fig. 6). 38 

mangrove forests registered 19.42°C. The highest max-
imum LST values were observed in built-up areas and 
bare land, with 29.89°C and 29.28°C, respectively. Other 
LULC types, such as plantations/perennial plants, ex-
hibited relatively high maximum values of 27.87°C and 
27.14°C, followed by shrubs, mangrove forests, and 
water bodies, with LST values of 24.90°C, 24.60°C, and 
23.97°C, respectively.

The highest mean LST value was found in built-up ar-
eas at 25.50°C, followed by other land cover types, in-
cluding bare land, rice fields/grass, plantations/peren-
nial plants, shrubs, mangroves, and water bodies, with 
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respective values of 25.50°C, 24.97°C, 24.62°C, 24.22°C, 
22.71°C, 21.97°C, and 21.39°C (Table 4). Based on their 
standard deviation values, water bodies, bare land, rice 
fields/grass, and built-up areas exhibited relatively 
high variability, with values of 1.27, 1.13, 1.03, and 0.90, 
respectively.

These findings suggest that these four land cover types 
exhibit high variability in their interactions with LST. For 
example, in water body areas with varying water depths 
and sediment presence, diverse interactions with LST 
were observed. Similarly, built-up areas, bare land, and 
rice fields/grass displayed varying characteristics in spe-
cific regions, including differences in vegetation density 
and non-vegetated areas. For instance, in rice field areas, 
both bare land zones and waterlogged rice areas were 
identified, resulting in relatively varied responses to LST.

Table 4. The differences LULC types on LST (°C)

LULC Min Max Mean Std

Built-up land 20.82 29.89 25.50 0.90

Bare land 20.01 29.28 24.97 1.13

Rice field/grass 19.23 27.14 24.62 1.03

Shrubs 20.72 24.90 22.71 0.58

Plantation/peren-
nial plant

21.89 27.87 24.22 0.78

Mangrove forest 19.42 24.60 21.97 0.78

Water body 19.23 23.97 21.39 1.27

The spatial distribution of built-up land, as observed in 
accordance with the most recent advancements in urban 
ecology and land cover analysis, prominently extends 
across urban regions and tourist destinations while in-
triguingly encompassing the eastern and southwestern 
coastal regions. In the southern coastal sector of ur-
ban zones, an intriguing interplay of land cover types 
characterized by notably high vegetation density, such 
as thriving mangrove forests and robust shrubbery, 
emerges. Spatially, the Kuta tourism area features an 
expanded runway and parking lot within the vicinity of 
Ngurah Rai International Airport, where bare land is de-
lineated as a gray zone on the map. The surrounding 
region is predominantly characterized by built-up land 
in the form of an airplane runway, while the area within 
the airport premises comprises a grassland landscape. 

Fig. 6. Spatial distribution of LULC types based on SVM machine 
learning algoritm (a) and LST in urban and tourism areas (b)

Furthermore, the verdant tapestry of additional vegeta-
tive covers, including rice fields/grass and plantations, 
adorns the fringes of urban and tourist areas. This nu-
anced arrangement has been notably accentuated in 
light of recent research, as the central urban sectors 
have become increasingly synonymous with a prevail-
ing dominance of built-up land (Fig. 6).
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Remarkably, this spatial pattern intimately corresponds to contemporary investigations into LST dynamics. 1 
The most current research has unveiled the central urban core as a focal point of interest, depicted in vivid shades 2 
of red on LST maps, signifying heightened LST values and aligning with the well-established urban heat island 3 
effect (Wirayuda et al., 2023; Sunarta et al., 2022). A recent study found that in the Denpasar Tourism Area, the 4 
maximum LST value measured using Landsat 8 imagery acquired on September 9, 2022, was 26.2°C (Wirayuda 5 
et al., 2023). Overall, the spatial pattern we observed aligns with the findings of previous researchers, although the 6 
maximum LST values differ due to the previous researchers’ focus solely on the Denpasar City area and the 7 
different acquisition and sensor types of satellite imagery. Conversely, the southern coastal regions have come into 8 
a sharper focus as the epicenter of lower LST values, prominently illuminated in deep shades of blue. Meanwhile, 9 
peripheral vegetated areas on the urban peripheries emerge in subtler shades of light blue, underscoring the 10 
complex interplay between land LULC and LST patterns within these evolving urban and coastal landscapes. 11 
 12 

  13 
Fig. 6. Spatial distribution of LULC types based on SVM machine learning algoritm (a) and LST in urban and 14 

tourism areas (b) 15 
 16 

We present scatterplots based on raster data comprising a total of 67 869 pixels. These figures offer profound 17 
insights into the correlations between EBBI and LST, as well as between NDVI and LST. Initially, our analysis 18 
accentuates a positive correlation between EBBI and LST (R2 = 37.78%). This positive relationship is vividly 19 
illustrated by the upward-sloping regression line. Conversely, upon scrutinizing the association between NDVI 20 
and LST, we discern a negative correlation (R2 = 10.69%), delineated by a downward-sloping regression line (Fig. 21 
7). The findings in our study hold particular significance for urban landscapes. The correlation between EBBI, 22 
NDVI, integrated into the LULC model, and their interaction with LST play a pivotal role in understanding land 23 
cover dynamics. As stated by As-syakur et al. (2012) and Hishe et al. (2024), EBBI, functioning as a spectral 24 
index, delineates built-up areas and unveils barren surfaces, providing insights into urbanization trends and land 25 
degradation. Elevated EBBI values signify dense built-up regions or barren expanses. Conversely, previous 26 
researchers (Chen and Zhang, 2017; Alexander, 2020) have noted that NDVI measures vegetation density and 27 
vitality, portraying healthier vegetation cover through higher values. The interplay among these indices and LST 28 
reveals how land cover types influence surface temperature dynamics. For instance, areas characterized by built-29 
up structures and barren landscapes, which typically exhibit lower vegetation density, tend to manifest higher 30 
surface temperatures due to heightened heat absorption and diminished cooling from evapotranspiration. 31 
Conversely, regions showcasing dense vegetation cover, as indicated by higher NDVI values, often exhibit lower 32 
surface temperatures due to shading effects and increased transpiration rates. 33 
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Remarkably, this spatial pattern intimately corre-
sponds to contemporary investigations into LST dy-
namics. The most current research has unveiled the 
central urban core as a focal point of interest, depicted 
in vivid shades of red on LST maps, signifying height-
ened LST values and aligning with the well-established 
urban heat island effect (Wirayuda et al., 2023; Sunarta 
et al., 2022). A recent study found that in the Denpasar 
Tourism Area, the maximum LST value measured us-
ing Landsat 8 imagery acquired on September 9, 2022, 
was 26.2°C (Wirayuda et al., 2023). Overall, the spatial 
pattern we observed aligns with the findings of previ-
ous researchers, although the maximum LST values 
differ due to the previous researchers’ focus solely on 
the Denpasar City area and the different acquisition 
and sensor types of satellite imagery. Conversely, the 
southern coastal regions have come into a sharper fo-
cus as the epicenter of lower LST values, prominently 
illuminated in deep shades of blue. Meanwhile, periph-
eral vegetated areas on the urban peripheries emerge 
in subtler shades of light blue, underscoring the com-
plex interplay between land LULC and LST patterns 
within these evolving urban and coastal landscapes.

We present scatterplots based on raster data compris-
ing a total of 67 869 pixels. These figures offer profound 
insights into the correlations between EBBI and LST, as 
well as between NDVI and LST. Initially, our analysis ac-
centuates a positive correlation between EBBI and LST 
(R2 = 37.78%). This positive relationship is vividly illus-
trated by the upward-sloping regression line. Converse-
ly, upon scrutinizing the association between NDVI and 
LST, we discern a negative correlation (R2 = 10.69%), de-
lineated by a downward-sloping regression line (Fig. 7).  
The findings in our study hold particular significance for 
urban landscapes. The correlation between EBBI, NDVI, 
integrated into the LULC model, and their interaction 
with LST play a pivotal role in understanding land cov-
er dynamics. As stated by As-syakur et al. (2012) and 
Hishe et al. (2024), EBBI, functioning as a spectral in-
dex, delineates built-up areas and unveils barren sur-
faces, providing insights into urbanization trends and 
land degradation. Elevated EBBI values signify dense 
built-up regions or barren expanses. Conversely, pre-
vious researchers (Chen and Zhang, 2017; Alexander, 
2020) have noted that NDVI measures vegetation den-
sity and vitality, portraying healthier vegetation cover 
through higher values. The interplay among these in-
dices and LST reveals how land cover types influence 

Fig. 7. Scatterplot depicting the relationship between the built-up 
land index (EBBI) and LST (a), and the relationship between the veg-
etation index (NDVI) and LST (b)
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The LST map presented in Fig. 5 is the result of averaging calculations using thermal channels 10 and 11 5 
from Landsat 9. To understand the interaction between thermal channels and land cover, we compared the products 6 
from the Thermal Infrared Sensor 2 (TIRS-2) on Landsat 9 with TIRS-1 on Landsat 8. Landsat 8 data were acquired 7 
on March 17 and August 24, 2022, while Landsat 9 data were acquired on March 25 and August 16, 2022, with 8 
an 8-day acquisition interval for both products. We selected one pixel for each land cover type and extracted the 9 
LST values from the products generated by both sensors using bands 10 and 11. Generally, LST values derived 10 
from thermal channel 10 were higher than those from channel 11, for both TIRS-1 and TIRS-2 sensors. Both 11 
sensors exhibited similar patterns in channels 10 and 11 after testing on various land cover types. Overall, the 12 
highest LST values were observed in built-up and bare land areas (Fig. 8). 13 

The launch of the TIRS-2 sensor on Landsat 9 offers significant advantages for future researchers, particularly 14 
in estimating LST with an 8-day temporal resolution. The varying LST values across different objects indicate 15 
diverse interactions, and the differences in data acquisition also highlight variations in LST influenced by regional 16 
climate variability. This technological advancement enhances our ability to monitor and analyze land surface 17 
temperature dynamics, providing valuable insights into the impacts of land cover changes and climate variability 18 
on urban and natural environments. 19 
 20 
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Fig. 8. The response of land cover variations on land surface temperature (LST) sourced from different sensors, 22 

namely TIRS-1 on Landsat 8 and TIRS-2 on Landsat 9, as well as from different thermal channels, channel 23 
10 and channel 11 24 

 25 
A study by As-syakur et al. (2012), utilizing Landsat 5 TM and 7 ETM+ data, revealed that, in 1995, LST 26 

ranged from 23.18°C to 31.04°C, averaging 27.28°C, while in 2003, ground surface temperatures varied from 27 
21.78°C to 36.12°C, with an average of 29.44°C. Notably, the standard deviation (SD) and LST variance in 1995 28 
were lower compared with 2003, indicating slightly higher LST variation in the latter year. These findings diverge 29 
significantly from our study, where LST values ranged from 19.23°C to 29.89°C based on Landsat 9 data acquired 30 
on May 25, 2022. Moreover, the Landsat 9 LST product exhibited a strong agreement with Landsat 7/8 LST, 31 
displaying a mean bias of 0.25/0.08 K, RMSE of 0.51/1.04 K, and mean absolute error of 0.38/0.64 K. This 32 
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surface temperature dynamics. For instance, areas 
characterized by built-up structures and barren land-
scapes, which typically exhibit lower vegetation densi-
ty, tend to manifest higher surface temperatures due 
to heightened heat absorption and diminished cooling 
from evapotranspiration. Conversely, regions showcas-
ing dense vegetation cover, as indicated by higher NDVI 
values, often exhibit lower surface temperatures due to 
shading effects and increased transpiration rates.

The LST map presented in Fig. 5 is the result of aver-
aging calculations using thermal channels 10 and 11 
from Landsat 9. To understand the interaction between 
thermal channels and land cover, we compared the 
products from the Thermal Infrared Sensor 2 (TIRS-
2) on Landsat 9 with TIRS-1 on Landsat 8. Landsat 8 
data were acquired on March 17 and August 24, 2022, 
while Landsat 9 data were acquired on March 25 and 
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Fig. 8. The response of land cover variations on land surface temperature (LST) sourced from different sensors, namely TIRS-1 on Landsat 
8 and TIRS-2 on Landsat 9, as well as from different thermal channels, channel 10 and channel 11
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August 16, 2022, with an 8-day acquisition interval for 
both products. We selected one pixel for each land cov-
er type and extracted the LST values from the prod-
ucts generated by both sensors using bands 10 and 11. 
Generally, LST values derived from thermal channel 10 

were higher than those from channel 11, for both TIRS-
1 and TIRS-2 sensors. Both sensors exhibited similar 
patterns in channels 10 and 11 after testing on various 
land cover types. Overall, the highest LST values were 
observed in built-up and bare land areas (Fig. 8).

The launch of the TIRS-2 sensor on Landsat 9 offers 
significant advantages for future researchers, particu-
larly in estimating LST with an 8-day temporal resolu-
tion. The varying LST values across different objects in-
dicate diverse interactions, and the differences in data 
acquisition also highlight variations in LST influenced 
by regional climate variability. This technological ad-
vancement enhances our ability to monitor and analyze 
land surface temperature dynamics, providing valua-
ble insights into the impacts of land cover changes and 
climate variability on urban and natural environments.

A study by As-syakur et al. (2012), utilizing Landsat 
5 TM and 7 ETM+ data, revealed that, in 1995, LST 
ranged from 23.18°C to 31.04°C, averaging 27.28°C, 
while in 2003, ground surface temperatures varied 
from 21.78°C to 36.12°C, with an average of 29.44°C. 
Notably, the standard deviation (SD) and LST variance 
in 1995 were lower compared with 2003, indicating 
slightly higher LST variation in the latter year. These 
findings diverge significantly from our study, where 
LST values ranged from 19.23°C to 29.89°C based on 
Landsat 9 data acquired on May 25, 2022. Moreover, 
the Landsat 9 LST product exhibited a strong agree-
ment with Landsat 7/8 LST, displaying a mean bias of 
0.25/0.08 K, RMSE of 0.51/1.04 K, and mean absolute 
error of 0.38/0.64 K. This consistency in performance 

across Landsat 7/8/9 LST products can be attributed to 
the uniformity of the LST retrieval algorithm, although 
variations in specific heat capacity and thermal inertia 
among different land surface covers may contribute to 
significant biases (Meng et al., 2022).

The significant disparities in LST observed compared 
with previous studies can be attributed to the influence 
of global climate anomalies, particularly the El Niño 
and La Niña phenomena. According to the Oceanic 
Niño index (ONI), moderate El Niño events occurred in 
1995 and 2003, while a moderate La Niña event was 
active from 2021 to 2022. El Niño is characterized by 
elevated sea surface temperatures in the central Pa-
cific Ocean, promoting cloud formation and reducing 
rainfall in Indonesia, consequently leading to drought 
conditions and heightened temperatures. Conversely, 
La Niña entails cooler sea surface temperatures in the 
central Pacific, diminishing cloud formation, increas-
ing rainfall, humidity, and correlating with decreased 
temperatures. These climate phenomena play a crucial 
role in shaping regional weather patterns and can sig-
nificantly impact land surface temperatures.

Apart from the influence of global climate, a recent study 
(Hashim et al., 2022) conducted in Baghdad, Iraq, informed 
that the highest LST was associated with residential and 
arid areas, ranging from 46.7°C to 52.7°C, while the lowest 
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an 8-day acquisition interval for both products. We selected one pixel for each land cover type and extracted the 9 
LST values from the products generated by both sensors using bands 10 and 11. Generally, LST values derived 10 
from thermal channel 10 were higher than those from channel 11, for both TIRS-1 and TIRS-2 sensors. Both 11 
sensors exhibited similar patterns in channels 10 and 11 after testing on various land cover types. Overall, the 12 
highest LST values were observed in built-up and bare land areas (Fig. 8). 13 

The launch of the TIRS-2 sensor on Landsat 9 offers significant advantages for future researchers, particularly 14 
in estimating LST with an 8-day temporal resolution. The varying LST values across different objects indicate 15 
diverse interactions, and the differences in data acquisition also highlight variations in LST influenced by regional 16 
climate variability. This technological advancement enhances our ability to monitor and analyze land surface 17 
temperature dynamics, providing valuable insights into the impacts of land cover changes and climate variability 18 
on urban and natural environments. 19 
 20 

 21 
Fig. 8. The response of land cover variations on land surface temperature (LST) sourced from different sensors, 22 

namely TIRS-1 on Landsat 8 and TIRS-2 on Landsat 9, as well as from different thermal channels, channel 23 
10 and channel 11 24 

 25 
A study by As-syakur et al. (2012), utilizing Landsat 5 TM and 7 ETM+ data, revealed that, in 1995, LST 26 

ranged from 23.18°C to 31.04°C, averaging 27.28°C, while in 2003, ground surface temperatures varied from 27 
21.78°C to 36.12°C, with an average of 29.44°C. Notably, the standard deviation (SD) and LST variance in 1995 28 
were lower compared with 2003, indicating slightly higher LST variation in the latter year. These findings diverge 29 
significantly from our study, where LST values ranged from 19.23°C to 29.89°C based on Landsat 9 data acquired 30 
on May 25, 2022. Moreover, the Landsat 9 LST product exhibited a strong agreement with Landsat 7/8 LST, 31 
displaying a mean bias of 0.25/0.08 K, RMSE of 0.51/1.04 K, and mean absolute error of 0.38/0.64 K. This 32 
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was with water bodies and gardens, ranging between 25°C 
and 30.4°C. Research in the Dhaka-Bangladesh metro-
politan area predicts an increase in LST 2020 to 2030 in 
summer and winter to be greater than 35°C (Roy et al., 
2020). Another researcher states that the increase in built-
up land and urban expansion contributes to the rise in LST 
(Hua and Ping, 2018; Rahman et al., 2023; Ranagalage 
et al., 2017). Other effects are decreasing environmen-
tal quality, decreasing urban carbon stocks, and urban 

socio-economic problems (Chu et al., 2020; Lindén et al., 
2020; Babalola and Akinsalola, 2016; Zhou et al., 2022). For 
future researchers, we recommend using remote sensing 
imagery with higher spatial and temporal resolution for 
LULC and LST investigations in small urban areas to ad-
dress the research gaps or limitations in this study. This 
approach will yield more accurate results on LST variabil-
ity patterns for each season and their impact on climate 
change and the local environment.

Conclusions
The integration of remote sensing and the SVM ma-
chine learning algorithm facilitates the analysis of 
Landsat 9 data, enhancing LULC mapping and precise 
LST computation. Our study reveals distinct LST values 
across different LULC categories, with built-up areas 
dominating at 108.61 km², followed by rice fields/grass 
(42.37 km²), plantation/perennial plants (11.95 km²), 
bare land (10.04 km²), mangrove forests (6.84 km²), 
shrubs (4.78 km²), and water water bodies (2.69 km²). 
The highest LST values were recorded within built-up 
and barren land regions, reaching 29.89°C and 29.28°C, 
respectively, while other land cover types exhibit 
comparatively lower values. Our LULC classification 
achieved an overall accuracy of 88.52% and a Kappa 
coefficient of 81%, indicating accurate mapping with 
high precision. Additionally, our analysis of the spectral 
index used in LULC classification uncovers a positive 
correlation with EBBI (R2 = 37.78%) and a negative cor-
relation with NDVI (R2 = 10.69%), based on a substan-
tial sample size of 67 869 pixels. These findings under-
score the significant variability in LST interactions with 

primary land cover types, influenced by factors such as 
built-up areas, vegetation density, and water bodies. 
Future researchers should leverage high-spatial-reso-
lution data with extended temporal coverage, especial-
ly for local/small urban-scale studies. Moreover, we 
recommend that local governments enforce regula-
tions on spatial planning to preserve green open spac-
es, crucial for maintaining environmental equilibrium. 
Additionally, we propose that these findings serve as 
guidance in urban planning, advocating for regulations 
to limit the construction of tourism facilities in coastal 
tourism areas. Such restrictions are essential as they 
can mitigate the increase in surface temperatures, 
thereby addressing concerns related to the urban heat 
island phenomenon in the future.
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