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The ceramic membrane surfaces coated with cysteic acid were tested for efficacy and the fouling rate at constant 
crossflow velocities (CFV) and two transmembrane pressures (TMP). The crossflow mode was used during the 
filtration process to enable the membranes to perform for longer periods. The calculated variability and substance 
rejection were used to determine the performance of the membranes. In addition, cleaning in situ (CIP) was per-
formed on the membranes to ensure that the flux recovery process was executed smoothly after each run. The 
current study uses ceramic microfiltration membranes to investigate the effectiveness of a 2600-ppm calcium 
carbonate solution and 260-ppm 4-nitrophenol extraction/removal from water samples. The concentrations of 
Ca2+ ions of the distinct concentration samples were reduced by 89–96% by non-coating and coating ceramic mi-
crofiltration membranes for a three-hour reaction time. At the end of the run, the concentration of the solution 
was at a TMP of 0.20 MPa with an efficiency of about 99.5% at t = 160 min with a sustainable flux.
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Introduction
An undesirable characteristic of some natural and 
groundwater sources is their hardness. Several health 
issues, including odd-tasting drinking water and 

atopic eczema, can be caused by hard water world-
wide (Al-Dahhan and Al-Obaidi 2023). Natural water 
is hard due to dispersed minerals, primarily calcium 



50 Environmental Research, Engineering and Management          2024/80/2

and magnesium compounds. Most water facilities ap-
praise a degree of water hardness ranging from 50 to 
150 ppm of CaCO3 as suitable to the public (Tenget et 
al., 2023). The research focuses on treating groundwa-
ter and surface water with intensified ceramic microfil-
tration membranes. Numerous techniques for industrial 
wastewater and water have been documented in the lit-
erature. In addition to ion exchange, flotation, coagula-
tion-flocculation, adsorption, advanced oxidation, chem-
ical precipitation, and electro-oxidation, these techniques 
also involve flotation. The membrane process is a recent 
development in the field of wastewater treatment. This 
method uses polymeric or ceramic membranes to es-
tablish a selective barrier between the internal receiving 
phase and the wastewater they are treating. Due to ease 
of use, energy efficiency, simplicity and environmental 
friendliness, ceramic membrane processes are among 
the most effective liquid membranes for various applica-
tions of liquid including industrial water treatment.

Water and industrial wastewater have been documented 
using electrically stimulated membrane processes. The 
chemical, thermal, and mechanical stability of ceramic 
membranes makes them more popular than polymer 
membranes (Daches, 2019). Barone et al. have patented 
a method for altering pigment surfaces using cysteic acid 
to reinforce and improve ceramic membranes (Lee et al., 
2019; Usman et al., 2021).
Chemical surface modification can make ceramic filtra-
tion membranes hydrophilic or hydrophobic, depending 
on the application. ABRF-funded 1989 and 1991 amino 
acid analysis studies found that core facilities most typi-
cally measured cysteine concentration with cysteic acid. 
The 1989 and 1991 amino acid analysis studies support-
ed by the Association of Biomolecular Resource Facili-
ties found that core facilities used cysteic acid analysis 
to measure cysteine concentration most often. An inad-
equate compositional analysis comes from cysteine ox-
idation and cysteine to cysteic acid (Cya). Other amino 
acids, such as His, Met, Tyr, and Trp, are also transformed 
by this procedure; however, the popularity of the method 
can be attributed, in large part, to the fact that it is both 
straightforward and efficient. Oxidation with volatile rea-
gents such as performic acid covers both the surface and 
pores of the membrane with cysteic acid, which prevents 
particles from adhering to the membrane and fouling it. 
This results in the approach being particularly well-suited 
for micro-analysis. Additionally, the zwitterionic nature 
of the surface in the cysteic acid-functionalized alumina 
membrane creates a superhydrophilic layer that is easily 

wetted with water, resulting in low fouling. It has been 
demonstrated that the surface modification of filtration 
membranes enhances their performance by reducing 
membrane fouling, increasing separation efficiency, and 
increasing permeate fluxes. The results were compared 
with previously published work using a corresponding 
ceramic membrane arrangement and no alterations of 
the surface or with compounds other than cysteic acid 
(Gitis and Rothenberg, 2016) because the membranes 
used in these evaluations were acquired from Molec-
ular Filtration Inc. and were modified in situ. This study 
tested the ability of the modified ceramic membranes to 
treat ground wastewater using alumina (Al2O3) mem-
branes. An application of cysteic acid (HO3SCH2CH(NH2)
CO2H) was By using CaCO3 and 4-Nitrophenol, 20 liters of 
feed water containing 2600 ppm and 260 ppm in water, 
synthetic groundwater was created in the laboratory to 
test the performance of functionalized membranes. The 
pH was synthesized and changed from 5 to 4 by adding 
CH3COOH. A magnetic stirrer mixer was used to mix the 
mixture with CO2 with micro-bubbles to diffuse the CO2 
and capture the Ca to form CaCO3 for 30 minutes. Then, 
the solution was run through the membranes, removing 
the particles as dewater and lowering hardness. Molecu-
lar Filtration Inc. (MFI) supplied the microfiltration ceram-
ic membranes, and Sigma-Aldrich supplied all chemicals 
without purification. Molecular Filtration Inc. (MFI) pro-
vided the utilized filtration prototype rig (Kim et al., 2017). 
Fig. 1 displays the main properties of membranes.
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The procedure was deemed complete when the four conductivities were almost identical, as measured from the 27 
permeate side. Following functionalization, the membranes underwent multiple washes with distilled water (DW) 28 
before being allowed to dry. The filtration apparatus, meanwhile, was operated for around 40 minutes using 29 
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Fig. 3 shows the tank after the high-concentration groundwater running for 3 hours. 37 
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Membrane functionalization with cysteic acid
Cysteine acid was applied to modify the surface of the 
membranes to modify them even further. During the 
time when the membranes were attached to the filter-
ing apparatus, the coating was applied to them. A 1M 
solution of cysteic acid was produced by heating dis-
tilled water to temperatures ranging from 15°C to 65°C 
in the feed tank. Additionally, the permeate side of the 
filtration apparatus was left open for 12 hours while op-
erating at 85°C. The procedure was deemed complete 
when the four conductivities were almost identical, as 
measured from the permeate side. Following function-
alization, the membranes underwent multiple washes 
with distilled water (DW) before being allowed to dry. 
The filtration apparatus, meanwhile, was operated for 
around 40 minutes using distilled water (Daches, 2019).

Membrane cleaning
The following cleaning agents are illustrated in Fig. 2, and 
one can select one of them based on the characteristics of 
the feed material. The membranes were cleaned to guar-
antee adequate flux and separation efficiency (Zsirai et al., 
2016). The membrane cleaning was performed under the 
parameters shown in Table 1. Fig. 3 shows the tank after 
the high-concentration groundwater running for 3 hours.

Fig. 2. Cleaning agents used for membrane cleaning
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Table 1. The cleaning-in-place procedure 4 

Reagent (20 L) Recirculation time and temperature 
Water flushing 30 min, 25ºC 

2MNaOH 30 min, 60ºC 
Water rinsing 30 min, 25ºC 

1M oxalic acid 30 min, 60ºC 
Water rinsing 30 min, 25ºC 

 5 

 6 
Fig. 3. The tank after the high-concentration ground 7 

 8 
Experimental setup and operation 9 

 10 
Fig. 4 and Table 2 show  the setup for the experiment. The experimental setup had a feed tank with a capacity 11 

of 50 L. To keep the feedstock concentration steady, concentrate and permeate were reused in the feed tank while 12 
the framework was in the crossflow mode (Maguire-Boyle et al., 2017). Working the framework in the crossflow 13 
mode as opposed to the dead-end mode considers longer filtration cycles because the shear following up on the 14 
film as the retentate streams  across it keeps the  layer  from fouling. Two layers of a similar design were encased 15 
in two distinct lodgings and organized in series, as found in Fig. 5. 16 

With this arrangement, separation efficiency can be improved. A feed of 20 liters was moved through the 17 
system and into the feed tank using a circulation pump. The permeate flow rate (L/h) on the atmospheric side was 18 
monitored by a flow meter attached to the permeate line. The experiment was carried out at room temperature 19 
(27°C). The system’s control valves adjust crossflow velocity and operating pressure (Daches, 2019). 20 
 21 
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Fig. 5. The configuration of ceramic membrane. 5 
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Table 2. Operating and design information and flux data. 7 

Regular operating pressure 29–145 psi (2–10 bar) 
Max operating temperature 302°F (150°C) 
Max cleaning temperature 176°F (80°C) 

Acceptable pH – continuous operation 1–14 
Acceptable pH – clean-in-place (CIP) 0–14 

Pure water flux 800 L/m2h. 
Element water flux 192 LPH 

Examination conditions 14 psi (1 bar), 86°F (25°C). pure water 
Customizable length From 500 mm to 1200 mm 

Max operating pressure for MFM®UF 
membranes  

145 psi (10 bar) 

Max operating temperature shock ∆T  302°F (150°C) should not exceed 10°C per minute 
 8 

Analytical method 9 
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The following equation was used to calculate the extraction percent: 11 
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%Extraction percent � 100 � �initial  concentration�finalconcentration

initial concentration 𝑋𝑋100�  (1) 13 
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Permeate flux (L/m2h) 15 
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The following equation was used to determine the permeate fluxes (Jp) of the membrane as a function of 17 

time: 18 
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The following equation was used to calculate the extraction percent: 11 
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 14 

Permeate flux (L/m2h) 15 
 16 
The following equation was used to determine the permeate fluxes (Jp) of the membrane as a function of 17 

time: 18 
 19 

Experimental setup and operation
Fig. 4 and Table 2 (Molecular Filtration, Inc. USA) show 
the setup for the experiment. The experimental setup 
had a feed tank with a capacity of 50 L. To keep the feed-
stock concentration steady, concentrate and perme-
ate were reused in the feed tank while the framework 
was in the crossflow mode (Maguire-Boyle et al., 2017). 
Working the framework in the crossflow mode as op-
posed to the dead-end mode considers longer filtration 
cycles because the shear following up on the film as the 
retentate streams across it keeps the layer from fouling. 
Two layers of a similar design were encased in two dis-
tinct lodgings and organized in series, as found in Fig. 5. 
(Molecular Filtration, Inc. USA)
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With this arrangement, separation efficiency can be im-
proved. A feed of 20 liters was moved through the sys-
tem and into the feed tank using a circulation pump. The 
permeate flow rate (L/h) on the atmospheric side was 
monitored by a flow meter attached to the permeate 
line. The experiment was carried out at room temper-
ature (27°C). The system’s control valves adjust cross-
flow velocity and operating pressure (Daches, 2019).

Fig. 5. The configuration of ceramic membrane

Table 2. Operating and design information and flux data

Regular operating pressure 29–145 psi (2–10 bar)

Max operating temperature 302°F (150°C)

Max cleaning temperature 176°F (80°C)

Acceptable pH – continuous 
operation

1–14

Acceptable pH – clean-in-place 
(CIP)

0–14

Pure water flux 800 L/m2h.

Element water flux 192 LPH

Examination conditions
14 psi (1 bar), 86°F (25°C). 
pure water

Customizable length From 500 mm to 1200 mm

Max operating pressure for 
MFM®UF membranes 

145 psi (10 bar)

Max operating temperature shock 
ΔT 

302°F (150°C) should not 
exceed 10°C per minute

Permeate flux (L/m2h)
The following equation was used to determine the per-
meate fluxes (Jp) of the membrane as a function of time:  

5 

Jp = ������  (2) 1 
Where: 𝑄𝑄P – volume of the permeate (L); 2 
 Α – effective surface area of membrane (m2); 3 
 Δ𝑡𝑡 – time of sampling (h). 4 

 5 
Results and Discussions 6 

 7 
The carbonation process reduced the levels of hardness of the water samples. The pH of water samples was 8 

tested prior to and following carbonation. The CH3COOH effect and the injection of CO2 were crucial during the 9 
carbonation process for precipitating the Ca2+ carbonates and lowering the hardness of various water samples. 10 

For the carbonation process, the closed-pressure reactor approach utilized an aqueous medium. First, the 11 
reaction bottle was filled with CO2 gas at an 80 cc/min rate for 30 minutes. After that, it was filled with carbon 12 
dioxide. The carbonation reaction consists primarily of two steps: (i) carbon dioxide hydration, as depicted in 13 
equations (3)–(5); ii) calcium carbonate precipitates are produced when carbonate ions react with calcium ions 14 
(Zhu et al., 2014). 15 
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CO2(g) + H2O(l) ↔ H2CO3(aq)  (3) 17 
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−   (4) 18 
HCO3
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Ca2++CO3
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 22 
Reactions regulating the pH of untreated water are mostly mediated by carbon dioxide species. Many of the 23 

natural mechanisms that control the pH of water include carbon dioxide species. The chemical equilibrium model 24 
is able to assess the relatively quick reactions between species that are connected to alkalinity (aqueous CO2, 25 
H2CO3  (aq), HCO3, and CO2) and species that are directly related to pH (OH− and H+)  (Zhu et al., 2014). Over a 26 
phase boundary, however, the equilibrium rates between gaseous CO2 and solute species are slower. As a result, 27 
water bodies that are exposed to the air occasionally cooperate with it. The fundamental idea of the theory has 28 
been presented here. According to the calcium-carbon-dioxide equilibrium theory, Henry’s law applies when 29 
carbon dioxide gas is pressed into water (Khair and Star, 2013). 30 

 31 
Effect of cysteic acid on membrane 32 

 33 
Improving the operational efficiency of ceramic membranes is directly correlated to treating their surfaces 34 

with cysteic acid, which increases the hydrophilicity of the membranes. Covalent connections are formed between 35 
the dirt of the layer body and the cysteic destructive, making the films organophilic. (Zhang et al., 2013). The 36 
cysteic acid coating on the membrane surface produced no extra separation layer. However, the component 37 
composition of the surface is altered as a result of the synthetic adsorption of cysteic acid on the surface of the 38 
film or into its pores. That does not affect the form or size of the pores of the ceramic membrane. The wettability 39 
is affected due to the surface harshness and arrangement of compounds in the film. The functionalized earthenware 40 
film is suitable for groundwater partition due to its wettability. 41 

 42 
Flux monitoring 43 

 44 
In membrane microfiltration, it is essential to maintain an adequate level of constant flux. This indicates how 45 

well the membrane functions in any circumstance. The performance of the membrane is greatly impacted by a 46 
variety of parameters, including the flux, crossflow velocity (CFV), and transmembrane pressure (TMP), as well 47 
as the feed concentration, feed composition, membrane pore size, and transmembrane surface properties. The 48 
transition additionally shows the film’s fouling rate. The relationship between transition and fouling rate typically 49 
is the opposite. However, temperature, CFV, and TMP are often associated with motion. A membrane module can 50 
use either the constant pressure or constant flux modes of operation. Although the membrane had a constant flux, 51 
the TMP was still rising as the operation progressed. On the other hand, the operation with the constant pressure 52 
mode showed a decrease in flux (Roevens et al., 2017). While observing our framework’s motion, the film module 53 
ran in the consistent tension approach. The motion’s behavior was seen at two unmistakable transmembrane 54 
pressures (0.15 MPa, 0.20 MPa, and 0.25 MPa). Since pressure differentials typically drive membrane filtration, 55 
it was concentrated on the TMP. Figs. 6 and 7 demonstrate the approach to acting on the system progress 56 
concerning the transmembrane strain with time. A stable permeate flux with TMP of about 0.20 MPa was observed 57 
in the first 20 minutes. Although there were flux fluctuations at t = 100 min and t = 140 min, the system 58 
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membrane. 61 
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slower. As a result, water bodies that are exposed to 
the air occasionally cooperate with it. The fundamental 
idea of the theory has been presented here. Accord-
ing to the calcium-carbon-dioxide equilibrium theory, 
Henry’s law applies when carbon dioxide gas is pressed 
into water (Khair and Star, 2013).

Effect of cysteic acid on membrane
Improving the operational efficiency of ceramic mem-
branes is directly correlated to treating their surfaces 
with cysteic acid, which increases the hydrophilicity 
of the membranes. Covalent connections are formed 
between the dirt of the layer body and the cysteic de-
structive, making the films organophilic. (Zhang et al., 
2013). The cysteic acid coating on the membrane sur-
face produced no extra separation layer. However, the 
component composition of the surface is altered as a 
result of the synthetic adsorption of cysteic acid on the 
surface of the film or into its pores. That does not affect 
the form or size of the pores of the ceramic membrane. 
The wettability is affected due to the surface harshness 
and arrangement of compounds in the film. The func-
tionalized earthenware film is suitable for groundwater 
partition due to its wettability.

Flux monitoring
In membrane microfiltration, it is essential to maintain 
an adequate level of constant flux. This indicates how 
well the membrane functions in any circumstance. The 
performance of the membrane is greatly impacted by 
a variety of parameters, including the flux, crossflow 
velocity (CFV), and transmembrane pressure (TMP), 
as well as the feed concentration, feed composition, 
membrane pore size, and transmembrane surface 
properties. The transition additionally shows the film’s 
fouling rate. The relationship between transition and 
fouling rate typically is the opposite. However, temper-
ature, CFV, and TMP are often associated with motion. 
A membrane module can use either the constant pres-
sure or constant flux modes of operation. Although 
the membrane had a constant flux, the TMP was still 
rising as the operation progressed. On the other hand, 
the operation with the constant pressure mode showed 
a decrease in flux (Roevens et al., 2017). While ob-
serving our framework’s motion, the film module ran 
in the consistent tension approach. The motion’s be-
havior was seen at two unmistakable transmembrane 
pressures (0.15 MPa, 0.20 MPa, and 0.25 MPa). Since 

pressure differentials typically drive membrane fil-
tration, it was concentrated on the TMP. Figs. 6 and 7  
demonstrate the approach to acting on the system pro-
gress concerning the transmembrane strain with time. 
A stable permeate flux with TMP of about 0.20 MPa 
was observed in the first 20 minutes. Although there 
were flux fluctuations at t = 100 min and t = 140 min, 
the system continuously restored to a steady flux.

It is possible to provide an explanation for these changes 
by utilizing the strain differential across the membrane.

At the end of the run, the concentration of the solution 
was at a TMP of 0.20 MPa with an efficiency of about 
99.5% at t = 160 min with a sustainable flux. The flux 
stayed at 95% of the initial flux, showing that membrane 
fouling is limited. The same pattern can be seen in the 
run at TMPs of 0.15 and 0.25 MPa. At t = 80 minutes, 
the underlying motion and a supported transition were 
accomplished. The fact that the constant flux was 78% 
of the initial flux proves the high efficiency of the mem-
branes. The permeate had the same quality as the run 
at 0.20 MPa, even at the end of the run. The surface cov-
ered with cysteic acid permits the membrane to repel 
drops, which protects the membrane pores from deter-
rents and flow obstructions, resulting in the constant 
high flux observed for the two runs. In other words, 
there is no protection from the solution droplets, which 
keeps the flux going. Compared to other studies (Magu-
ire-Boyle et al., 2017; Keskin et al., 2021), cysteinic acid 
has a greater potential to increase the hydrophilic prop-
erties of ceramic membranes for better performance. 
Studies (Hu et al., 2015; El Batouti et al., 2021; Keskin et 
al., 2021) indicate that fouling causes unfunctionalized 
layers to encounter fast transition declines. Unfunction-
alized membranes showed a decline in their flux, which 
could reach up to 70% of the initial flux. Unfunctional-
ized membranes do not have the component that per-
mits them to repulse arrangement drops. Consequent-
ly, the solution is readily absorbed onto the surface of 
the membrane, constricting the membrane’s pores to 
prevent flow and speed up fouling.

Water treatment
The change in pressure (DP) over the ceramic membrane 
is the driving force behind its use to separate impurities 
from water. The membrane’s purpose and treatment 
mode (MF, UF, NF, RO) and MWCO determine the sepa-
ration efficiency. The rejection efficiency is higher when 
the droplet size is larger in microfiltration (MF). Following 
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this, there is a significant drop in the permeate flux due 
to solution droplets being deposited on the surface of 
the membrane, creating a resistant layer to flow. How-
ever, due to the droplets’ ease of deformation through 
the membrane pores, a droplet’s rejection efficiency 
decreases with a decreasing droplet size (Abdullah et 
al., 2022; Abdullah et al., 2021a; Abdullah et al., 2021b). 
Therefore, surface functionalized membranes are used 
in the best condition of 45 Hz, P1 = 1.2 KPa, and P2 = 0 
after three hours of treatment, as shown in Figs. 6 and 7, 
to reduce fouling and low rejection efficiency. Since the 
surface of the membrane has captured the Ca+2 ions, 
the membranes will prevent the Ca+2 ions from pass-
ing through their pores and will prevent droplets from  
adhering to their surface. The obtained permeate had a 
rejection efficiency of 99.5% and a permeating quality of 
pp. The fact that the permeate was obtained in a single 
pass with no prior treatment makes this result promising 
(Hu et al., 2015; El Batouti et al., 2021, Keskin et al., 2021).

Conclusions
This study demonstrated that to observe the phenol com-
pound passing through the membrane and the capture 
of Ca2+, commercial Al2O3 ceramic microfiltration mem-
branes were treated with 2600 ppm and 260 ppm ground-
water, respectively. The concentration of the solution was 
at a TMP of 0.20 MPa with an efficiency of about 99.5% at 
t = 160 min with a sustainable flux. Cysteic acid improved 
membrane performance more than any other compound, 
exhibiting high rejection efficiency and a prolonged, stable, 
sustained flux. The result obtained in this work supports 
the use of a ceramic membrane process for hardness re-
moval, which can be extended to remove another non-po-
lar component efficiently. CaCO3 cannot be dissolved in 
water using a batch reactor alone; it needs injection gas 
with pressure to help the CaCO3 to dissolve in water, and 
this is the idea used to separate it from the water using 
the membrane unit since it is working on the non-polar 
component only. It mimics the water hardness since it is 
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