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The long-term shifts in temperatures and weather patterns are referred to as climate change. Climate change not 
only leads to long-term shifts in average temperatures but also changes in the spatial and temporal distribution of 
rainfall over continents. This study aims to predict likely changes in the rainfall pattern induced by climate change 
over the West Central (WC) region of India. The approach uses a statistical downscaling technique that converts 
coarse-scale outputs of the global climate model (GCM) to high-resolution future precipitation projections giving 
refined distribution. The decision support tool that uses a robust statistical downscaling technique viz. statistical 
downscaling model (SDSM) is used for assessing local climate change impacts.

The research includes the study of likely regional climate variability, by integrating historical observational data 
and empirical relationships between large-scale climate variables and local weather patterns. Historical data and 
the SDSM, version 4.2, are employed to forecast future rainfall trends. Rainfall data from the India Meteorologi-
cal Department and the National Centre for Environmental Prediction (NCEP) from 1961 to 2001 are used along 
with outputs from general circulation models (GCMs), viz. Hadley Centre coupled model, version 3 (HadCM3), and 
coupled global climate model, version 3 (CGCM3), for the period 1961–2099. Rainfall scenarios are presented for 
three future time periods (2011–2040, 2041–2070, and 2071–2099). The study indicates a significant increase in 
the mean annual precipitation across the West Central India region, particularly in the 2050s and 2080s.

Mean annual rainfall is projected to rise by 10–19.4% under HadCM3 A2 and B2 scenarios. The HadCM3 indicates the 
month of September as the month of the highest precipitation in later time periods, whereas it is the month of August, 
according to CGCM3 simulations. When comparing the results of the two models, HadCM3 gives better results, as indi-
cated by better R2 value in validation. Thus, the analysis gives climate change-induced likely changes in the spatiotempo-
ral distribution of precipitation over the West Central India region. The insight given by the work will be useful for decision 
making in many sectors like agriculture, water management, disaster risk reduction, and infrastructure planning.
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Introduction
The term climate change refers to long-term variations 
in temperature and weather patterns. These fluctua-
tions could be caused by natural events such as large-
scale volcanic eruptions, variations in solar activity as 
well as burning fossil fuels, deforestation, and some 
agricultural and industrial practices by human beings. 
Climate change-related hydrological studies give em-
phasis on rainfall as a critical variable. Climate change 
imposes a remarkable impact on the hydrological cy-
cle, the world’s water supplies in the form of surface 
water and groundwater.

Climate change affects global temperature changes 
(IPCC, 2013; Feng et al., 2014). Climate change influ-
ences rainfall patterns, which in turn influences agri-
culture and water supply. Changes in the spatiotempo-
ral distribution of rainfall over time may make things 
worse. Since precipitation is the main factor influencing 
the availability and distribution of water on the Earth’s 
surface, it is undeniably an essential component of the 
hydrological cycle. Precipitation is essential for main-
taining ecosystems, replenishing freshwater supplies, 
and sculpting the topography through weathering and 
erosion (Changnon et al., 1988; Jakeman and Horn-
berger, 1993).

The summer monsoon in India provides a significant 
portion of the country’s yearly precipitation in most re-
gions, particularly in the central, northern, and western 
regions of the country. In these areas, it often makes 
up 70–90% of the yearly rainfall total. The perception of 
an increase in daily rainfall amount and occurrence due 
to climate change is not found correct for some of the 
regions in India. The possible reason may be the spatial 
variability of local changes such as rapid urbanization, 
industrialization, and deforestation (Srivastava et al., 
2015). The hydrological variables, such as runoff and 
soil moisture, are influenced by the frequency of pre-
cipitation. Upcoming occurrences of heavy rainfall and 
the decreasing trend of moderate rainfall are observed 
across Central India. However, the different regions 
of India are responding to global warming in different 
ways to the frequency and volume of rainfall (Goswa-
mi et al., 2006). Similarly, heavy rainfall with increasing 
trends and moderate rainfall with decreasing trends 
are studied over Central India (Ghosh et al., 2009).

The adaptability of the statistical downscaling model 
(SDSM) for downscaling temperature and precipitation 

in the Upper Godavari basin, India, is examined by re-
gression analysis that constructs connections between 
predictands and predictors based on empirical statis-
tical relationships, presenting simplicity and minimal 
computational requirements (Saraf and Regulwar, 
2016). The study discusses future precipitation and 
temperature projections for the region under inquiry. 

Munawar et al. (2021) used the SDSM approach for 
RCPs in the Jhelum River basin to study climate change 
by adding GCM (CCSM4). Using SRM, the Jhelum River 
Basin discharge was simulated using de-biased down-
scaled data and MODIS data. This approach allows for a 
detailed examination of how variations in greenhouse 
gas emissions and socio-economic factors may influ-
ence temperature trends in the region. The daily rainfall 
behavior in the four homogeneous regions of India is 
studied by Zheng et al. (2016). They indicate that it has 
a relation with the strength of monsoon. The strength 
of the monsoon (strong/weak) and corresponding Indi-
an summer monsoon rainfall (ISMR) play a significant 
role in climate change studies. Rainfall rates are pri-
marily stronger (weaker) over NWI (North West India), 
CI (Central India), and SPIN (South Peninsular India) 
during intense (weak) monsoons. In contrast, rainfall 
rates over NEI (North East India) show no significant 
changes between solid and weak monsoons. The daily 
time estimates with a 25-kilometer spatial precision 
for the Indian summer monsoon rainfall (ISMR) by pro-
jecting future ISMR values using the A2 scenario em-
phasize an expected increase in rainfall in India’s west 
coast, northeast, and western areas (Shashikanth and 
Ghosh 2013). Informed adaptation and mitigation plans 
for the many climatic zones of the Indian subcontinent 
may be formulated with the help of this thorough re-
search, which provides insightful information about the 
possible geographical distribution of rainfall patterns 
under various climate scenarios.

The global climate models are used in this study. The 
Hadley climate model, version 3 (HadCM3), is a cli-
mate model developed by the Hadley Centre for Climate 
Prediction and Research in the United Kingdom. It is a 
coupled atmosphere-ocean model that includes com-
ponents for simulating the atmosphere, ocean, sea ice, 
and land surface. HadCM3 has been used in various cli-
mate studies and assessments to understand past and 
future climate changes. The number 3 refers to the third 
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version of a coupled climate model. No specific coupled 
global climate model, version 3 (CGCM3), stands out uni-
versally, as different research institutions may develop 
their own coupled models using a similar nomenclature. 
However, models with the coupled global climate model 
generally incorporate atmosphere, ocean, land surface, 
and sea ice components, allowing for a comprehensive 
simulation of the Earth’s climate system.

This study in particular uses historical data to forecast 
the spatiotemporal variability of future rainfall in the 
West Central area of India. The downscaling method 
used in this work shows the relationship between local 
and regional climate variables, which are derived from 
atmospheric variables at a larger scale. Like other cli-
mate models, HadCM3 and CGCM3 are helpful tools re-
searchers may use to study and forecast the complex 
interactions that make up the Earth’s climate system. 
This research aims to provide essential insights into 
the region’s vulnerability to changing climate condi-
tions and improve adaptation strategies for sustainable 
development by understanding the influence of climate 
change on rainfall distribution over time and location. 
It helps researchers to predict future weather patterns 
and understand the potential impacts of various fac-
tors, including greenhouse gas emissions.

Climate change impact assessment studies are carried 
out by downscaling. Global climate model (GCM) output 
is available at coarse resolution. The downscaling tech-
nique shows the relation between local and regional 
scale climate variables derived from large F-scale at-
mospheric variables (Hewitson and Crane, 1996). The 
GCMs are unable to resolve important sub-grid-scale 
features, such as clouds and topography, for local-scale 
hydrologic impacts of climate change in the Tunga–
Bhadra River basin, India, and its consequences for the 
management of water resources and agriculture in the 
study area. This may be because the output of the GCMs 
is unreliable at individual grids (Meenu et al., 2013).

The spatial and temporal resolution of GCM projections 
using SDSM 4.2 enables a more localized and detailed 
analysis of precipitation variability in water-stressed 
regions like the Upper Mahanadi basin (Subbarao and 
Maity, 2017). Because of their coarse (grid) resolution 
and the local variety of terrain and climate, basin-level 
water resource planners are unable to fully compre-
hend the impact of climate change on the hydrological 
cycle on a worldwide scale (Minville et al., 2008).

The maximum temperature of the Ganga basin is pre-
dicted to fluctuate in the future owing to climate change 
using a statistical downscaling model (SDSM) under 
the RCPs 2.6, 4.5, and 8.5 scenarios of the CanESM2 
model outputs (Gupta et al., 2023).   

Downscaling is of two types: (1) dynamical downscal-
ing and (2) statistical downscaling. Dynamic down-
scaling dynamically extrapolates the impacts of large-
scale climatic phenomena to regional or local scales 
using high-resolution regional climate models. Instead 
of statistically portraying important meteorological 
phenomena, it models their physics. Dynamic down-
scaling uses regional climatic models (RCMs). Statis-
tics-based methods are used in statistical downscaling 
to establish relations between observed local climate 
responses and large-scale climate trends. It establish-
es a statistical relationship between the local and glob-
al climate using observed data.

This research includes a statistical downscaling meth-
od. The GCM outputs frequently possess a coarse spa-
tial resolution. The statistical downscaling method en-
hances the outputs to fine resolution and enables them 
to represent local and regional climate characteristics 
in a better fashion. Statistical downscaling provides 
correlations between GCM outputs (predictors) and lo-
cal climatic variables (predictands). 

A technique for converting general circulation mod-
el (GCM) predictors into surface and local variables 
through downscaling methods has been developed 
(Wilby and Wigley, 2000). It examines the climate var-
iables at regional or local scales and enhances the 
understanding of climate change impacts on specific 
areas. Nonparametric methods for modelling GCM and 
biases were individually corrected for each GCM in the 
study using observed data from the baseline (1961–
1990) to verify scenario uncertainty in drought assess-
ment in the Mahanadi River basin in India, assuming 
that all scenarios have the same probability and that 
all models’ bias-free GCM simulations are equally ac-
curate (Ghosh and Mujumdar, 2007). The present work 
therefore aims to determine the dry and wet spell 
lengths over the study area for various time scales and 
to comprehend the spatiotemporal variation in future 
rainfall over the West Central region of India utilizing a 
statistical downscaling approach employing SDSM.

Global climate models (GCMs) are vital resources for 
researching and forecasting global climate trends and 
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shifts. They are fundamental components of climate 
research that advance our knowledge of the intricate 
relationships that make up the Earth’s climate system. 
GCM outputs with GHG concentration in the atmos-
phere are the best tool for generating future scenari-
os. With a resolution of 150–300 km by 150–300 km, 
researchers display GCM data for the entire world in a 
three-dimensional grid format (Mujumdar and Ghosh, 
2008). However, for hydrological impact assessment 
studies at the regional scale, GCM outputs are not used 
directly due to spatial resolution. Hence, downscaling 
is necessary to derive the local scale variables from 
atmospheric GCM output.

The SDSM utilizes multiple linear regression approach-
es to create statistical correlations between local cli-
mate variables, predictands, and larger-scale climate 
predictors. SDSM is a promising and performing down-
scaling model that combines unpredictable weather 
generation (SWG) with multiple linear regression (MLR) 
(Wilby et al., 2002). SDSM progresses on a daily time 
series of NCEP predictors and observed precipitation 
or temperature daily time series (Huang et al., 2011). 
Model reliability is determined by examining the down-
scaling of precipitation in the Indian monsoon area and 
using an appropriate set of predictor variables.

The research on the statistical downscaling of rainfall 
to investigate climate change, presents a study on the 
likely variation of precipitation patterns in the Europe-
an Alps under various climate change scenarios, pro-
jecting the potential changes in local climates and their 
effects on the region’s ecosystems, water resources, 
and communities (Schmidli et al., 2007). The impact 
of climate change on the overturning circulation of the 
South Asian monsoon was explored using SDSM to 
downscale rainfall estimates over the Western Ghats 
of India (Krishnan et al., 2013). The study highlights the 
monsoon circulation that stabilizes even in uncertain 
future projections. India’s West Central region includes 
Gujarat, Maharashtra, Madhya Pradesh, and parts of 
Rajasthan. Potential effects of rising temperatures in 
the recent decade and shifting weather patterns in-
clude longer dry periods and more frequent and severe 
downpour events.

This research presents a novel way to examine future 
rainfall trends over the West Central region of India 
by assessing the effects of climate change on spati-
otemporal variation in precipitation distribution using 

the daily fine-gridded rainfall dataset (0.25°X0.25°) and 
the SDSM. The study thoroughly analyzes future rain-
fall scenarios filling a notable gap in regional climate 
change understanding. This innovative methodology 
enables the creation of accurate future scenarios, of-
fering crucial insights into the potential evolution of 
precipitation dynamics in response to shifting climat-
ic conditions in this specific geographic location. It is 
challenging to identify the potential predictors that 
significantly affect the rainfall patterns in West Central 
India, which makes this study more interesting. Ulti-
mately, the significance of statistical downscaling for 
rainfall scenarios in West Central India lies in its abil-
ity to provide precise, localized projections with high 
resolution. These projections equip stakeholders with 
essential insights, enabling informed decision-making 
and the implementation of effective adaptation strate-
gies by accurately capturing the complex climate dy-
namics of the region.

The current research employs the following objectives:
1 to study the climate change effects on the spatiotem-

poral variation in future rainfall over the West Central 
region of India, by a statistical downscaling approach;

2 to analyze the performance of the model at different 
spatial and temporal scales and anticipate the hydro-
logical challenges over the study area in the upcoming 
decades;

3 to study the dry spell and wet spell lengths over the 
study area at different time scales.

Methods
Study area
West Central (WC) is a region with a spatial domain 
spanning 16.5°N to 26.5°N and 74.5°E to 86.5°E. 
The West Central region encompasses an area of 
962 694 km2, or around 33.42% of India. The aver-
age annual rainfall over the West Central region is 
1158.19 mm based on observed rainfall values of IMD 
for 1961–2001. The study area covers a total of eight 
meteorological subdivisions of India (as defined by the 
Indian Institute of Tropical Meteorology), namely West 
Madhya Pradesh, East Madhya Pradesh, Madhya Ma-
harashtra, Marathwada, Vidarbha, Chhattisgarh, Telan-
gana, Konkan and Goa and North Interior Karnataka. 
The topography of the WC region does not have much 
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Fig. 1. Map of India highlighting study area, West Central (WC)

influence on extreme events. As per the studies car-
ried out by the National Climate Centre (NCC Research 
Report, September 2013, R.R.No.1) on the IMD4 data 
set for the temporal domain from 1901 to 2013, over 
homogenous regions of India, there were clear upward 
trends in the occurrence of both very heavy rainfall 
(VHR > 150 mm) and heavy rainfall (HR > 100 mm). To 
examine the extreme rainfall trends across the region 
in the future, the study attempts to anticipate future 
rainfall trends over the West Central India region, which 
includes drought-prone subdivisions viz. Marathwada, 
Vidarbha, and Madhya Maharashtra. Fig. 1 shows the 
map of India highlighting the study area.

Data used
Observed data at local scale (predictand). The daily 
precipitation data at all grid points with a resolution of 
0.25° x 0.25° (latitude x longitude) are obtained from 
the India Meteorological Department (IMD) (Pai et al., 
2014). The dataset includes real-time rainfall for 1961–
2001 on a temporal scale.

Large scale atmospheric variables (predictors). The 
reanalysis dataset (NCEP/NCAR) with a horizontal res-
olution of 2.5° x 2.5° and 17 constant pressure levels 
from 1961 to 2003, together with monthly mean at-
mospheric variables, are obtained from the National 

Centre for Environmental Prediction (https://psl.noaa.
gov/data/gridded/data.ncep.reanalysis.html)

The analysis includes the 40-year GCM output from 
CGCM3 (3.750 latitude x 3.750 longitude) and HadCM3 
(2.5° latitude x 3.75° longitude) from our analysis. The 
Canadian Climate Impacts Scenarios Group collects 
these standardized predictor variables of NCEP/NCAR, 
HadCM3 and CGCM3 (http://www.cics.uvic.ca/scenar-
ios/sdsm/select.cgi) and the website of Data Access 
Integration (DAI) (http://loki.qc.ec.gc.ca/DAI/predic-
tors-e.html). The period of the years 1961 through 1990 
is considered as the baseline for assessing future cli-
mate change over a period 2001 through 2099 for Had-
CM3 with scenarios A2 and B2, and for CGCM3 with sce-
narios A1B and A2).

Statistical downscaling model (SDSM)
The SDSM employs multiple linear regression ap-
proaches to construct statistical correlations between 
local-scale climate variables (predictands) and large-
scale climate predictors (Wilby et al., 2002). These con-
nections, which are established using historical data, 
are thought to be relevant in the future. The SDSM uses 
the general circulation model (GCM) predictions to 
downscale local data for future periods. For a thorough 
explanation of SDSM, see (Wilby and Dawson, 2013; 
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Wilby et al., 2002). The SDSM is widely used in studies 
related to climate change and is used to downscale a 
variety of hydroclimatic variables, such as tempera-
ture (Yang et al., 2012), seasonal or monthly precipi-
tation (Meenu et al., 2013; Pervez and Henebry, 2014).  
HadCM3 data with a year length of 360 days and CGCM3 
data with 365 days is used to run the model for scenar-
io generation.

The basic idea behind regression models in downscal-
ing is to establish a statistical relationship between 
large-scale predictors (such as temperature, humidity, 
and atmospheric pressure) and local-scale predictors 
(like rainfall) based on historical observations. Regres-
sion model is selected as the method of precipitation 
prediction based on the characteristics of the data. The 
stepwise regression is followed in the variable selec-
tion process, and the present study employs the meth-
od of multiple linear regression.

Model development. The regression model is construct-
ed using historical climate data, including large-scale 
predictors and local-scale observations. The model 
aims to establish a statistical link between large-scale 
predictors and observed local-scale rainfall.

The detailed methodology of SDSM is as follows:
a Preprocessing of the data: The quality of observed data 

(predictand) is checked by the ‘quality control’ com-
mand in SDSM. It involves cleaning, transforming, and 
organizing raw data to prepare it for further analysis or 
modelling.

b Statistical relationship and variable transformation: 
After the quality control check, data ‘transformation’ 
and variable ‘screening’ are carried out. The set of pre-
dictors strongly influencing the rainfall is obtained by 
performing separate monthly, seasonal, and annual 
analyses. The predictors with the best statistical con-
nection to the predictors are selected in this step.

c Downscaling: Downscaling the predictand presents a 
significant issue when choosing the predictors based 
on partial correlation P value and R value or examining 
the relationship between each predictor in scatter plots. 
After screening the variables, the model is calibrated 
using the first 20 years of daily data (1961–1980). The 
‘conditional’ process is chosen to downscale precipita-
tion and the ‘unconditional’ process is chosen to down-
scale temperature (Wilby and Dawson, 2013).

d Evaluating model performance: The quality of the 
downscaled forecasts is evaluated by comparing them 

with observed fine-scale rainfall data from the past or 
with other reference points to analyze how well the 
model captures the patterns and variances in rainfall.

e Uncertainty analysis: The level of uncertainty of the 
downscaled projections is analyzed to investigate the 
sources of uncertainty, including those related to pre-
dictor choice, variability, and model structure. When 
using ensemble methods, one needs to consider mul-
tiple climate models or examine different emission 
scenarios.

f Generate future scenario: Synthetic daily precipitation 
time series generated by the “Scenario generator” 
window are downscaled using HadCM3 and CGCM3 
predictors. The predicted daily precipitation time se-
ries occurrences for HadCM3 and CGCM3 with A1B 
and A2 scenarios were downscaled using the A2 and 
B2 scenario predictors. The flow chart below illus-
trates the approach used in the current investigation. 
The observed IMD data (for the historical period of 
1961–2001) are compared to the outcomes of model 
simulations. Model calibration and validation findings 
were satisfactory. Fig. 2 shows a schematic diagram 
of the downscaling methodology using SDSM.

Equation (1) describes the linear relationship between 
the predictor variables (j = 1, 2, …, n) and the occurrence 
of a wet day on day Wi. This equation draws a link be-
tween the occurrence of wet days and large-scale at-
mospheric predictors. To summarize, SDSM uses lin-
ear conditioning with observed large-scale predictors 
to generate station-scale weather characteristics. For 
conditional downscaled processes like daily precipita-
tion, the occurrence of a wet day is governed by a linear 
relationship with predictor variables Xij.
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(1)

The predictor variables show the current large-scale 
weather conditions, and under a specific constraint 
0 ≤ Wi ≤ 1, precipitation occurrence depends on uniform 
random number r ≤ Wi. The value of Wi varies within 
the range of 0 to 1; notably, this variable is continuous, 
ranging from 0 to 1, rather than a binary (0 or 1) value. 
For example, Wi is equal to 0.2, which might be used to 
represent a day with high pressure. Next, if and only if 
R is less than or equal to 0.2, the variable R determines 
the probability that a wet day will occur. 

Equation (2) defines the equation for the total down-
scaled precipitation (Pi) on ith day, assuming the return 
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Fig. 2. Schematic diagram of downscaling methodology using SDSM

of a rainy day. The occurrence of rainy days is evaluat-
ed using the R parameter. Depending on the amount 
of rain or the precision of the measurement, different 
places may have different wet-day thresholds (mm). 
Wet day return (Pi), which is a downscaled measure of 
total precipitation, is provided by:
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(2)

where K is the transformation (e.g., logarithmic, in-
verse standard, fourth root, none if not applicable);  
Xij is selected predictor sand; and εi model error.

This study uses the SDSM to examine the effects of cli-
mate change on precipitation distribution across India’s 
West Central region, presenting a novel method for as-
sessing future rainfall patterns in the area. By means of 
a comprehensive examination of spatiotemporal fluctua-
tions in future rainfall scenarios, this study substantially 
advances our comprehension of local climate change.

Calibration and validation
Calibrating a statistical downscaling model involves 
modifying its parameters to suit the specific region 
and climate variables under examination. This step 
helps to adjust for biases and discrepancies between 

the outputs of the downscaled model and observed 
historical climate data. By calibrating the model, it 
becomes more accurate in reproducing the statistical 
relationships between local climate variables (temper-
ature and precipitation at a specific location) and global 
climate models. Validation is the process of assessing 
the performance of the downscaled model. To evaluate 
the model’s reliability in predicting future events, val-
idation provides an objective assessment of its ability 
to generalize to new data. Validation helps identify the 
uncertainties associated with downscaled forecasts.

In the present study, the model is calibrated over a period 
of 1961 to 1980 and validated over the period 1981–2000 
by observed precipitation data and observed predictors 
selected through the screening process (NCEP vari-
ables). A monthly model is chosen, and 12 distinct re-
gression equations are conducted independently for each 
month. A total of 26 NCEP predictors were downloaded 
for the selected grid box. The methodology discusses the 
selection criteria for predictors given in Table 1.

Model results for the calibration and validation peri-
od were statistically tested by root mean square er-
ror (RMSE), coefficient of determination (R2), stand-
ard deviation (SD), standard error (SE), and mean (µ). 
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However, R2 gives a correlation between observed data 
and model-simulated results that will ultimately test 
the reliability and accuracy of the model.

Future rainfall scenarios are generated using HadCM3 
and CGCM3 data for each scenario output. A daily syn-
thetic rainfall of twenty ensembles from 1961 to 2099 
is calculated and then averaged to separate for three 
investigated time periods (each of 30 years), such as 
2011–2040, 2041–2070 and 2071–2099.

Results and Discussion
The success of a predictive model is discussed in this 
section. Researchers have identified a group of vari-
ables called predictors, which can be used to predict 

Table 1. Selected NCEP predictors through the screening process 
of SDSM

Sr. 
No

Predictor (variable) description Symbol Unit

1 The mean temperature at 2 m nceptempas °C

2 500 hpa airflow strength ncepp5_fas m/s

3 850 hpa zonal velocity ncepp8_uas m/s

4 Surface divergence ncepp_zhas s−1

5 500 hpa geopotential height ncepp500as M

6 Surface specific humidity ncepshumas g/kg

a specific outcome referred to as the predictand. The 
present study attempts to use several measures to 
judge the accuracy of the model:

RMSE: It stands for root mean square error. It shows 
how far off the predicted values were from the real val-
ues. For this model, the RMSE numbers for the cali-
bration phase are between 11.26 and 11.58, and for the 
validation phase, they are between 16.38 and 16.56. In 
general, lower RMSE numbers mean that the model 
works better. The results show that the model works 
better in the calibration than in the validation phase.

Standard error: The number shows the uncertainty of 
the model’s forecasts. In this case, it is between 7.32 
and 8.64 during calibration and 8.42 and 9.46 during 
validation. The accuracy of the model increases when 
the standard error is low.

Coefficient of determination (R2): The R2 coefficient of 
determination shows how well the model’s forecasts 
match the actual data. A value of 1 means the fit is per-
fect, and a value of 0 means no fit. The range for R2 is 
between 0.75 and 0.82 during the testing phase. The 
range for the validity phase is between 0.77 and 0.80. 
These numbers show that the model explains a lot of 
the variation in the data, which is usually a good sign.

Table 2 for calibration and Table 3 for validation high-
light the results. These tables explain the model’s per-
formance, including predictor variable contributions 
and other statistics.

Table 2. Mean monthly precipitation of observed and downscaled data for the calibration period 1961–1980

GCM Description SD (mm) µ (mm) SE (mm) R2 RMSE

HadCM3
Observed 30.25 28.34 8.23 - -

NCEP 26.32 24.76 7.59 0.75 11.58

CGCM3
Observed 30.82 28.27 8.64 - -

NCEP 26.57 24.13 7.32 0.82 11.26

Table 3. Mean monthly precipitation of observed and downscaled for validation period 1981–2000

GCM Description SD (mm) µ (mm) SE (mm) R2 RMSE

HadCM3
Observed 28.25 30.74 9.13 - -

NCEP 23.36 28.36 8.39 0.77 16.38

CGCM3
Observed 28.69 30.24 9.16 - -

NCEP 22.87 28.53 8.42 0.80 16.56
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In predictive modelling, the choice of predictor varia-
bles is critical to the model’s ability to predict the pre-
dictor successfully. Earlier researchers have exten-
sively studied the significance of predictor variables 
and their impact on predictive model performance.

Evaluation of precipitation changes on a monthly 
basis
According to the findings of the spatial mapping of 
rainfall variation by downscaling studies carried out on 
homogeneous monsoon regions of India, the precipi-
tation fluctuated more in the meteorological sub-divi-
sions of Western India.

Increasing trends in monthly precipitation changes 
(mm) for both the GCMs in the respective scenarios 
were shown in SDSM, HadCM3 A2 and B2 scenarios. 
Fig. 3 shows the highest monthly precipitation changes 
in September over the time period 2071–2099. Similar-
ly, CGCM3 shows the monthly precipitation variation for 
A1B and A2 scenarios over different time periods (Fig. 
4). The results show a notable change in the month 
of August for both the scenarios of CGCM3. From the 
investigated time period 1 to time period 3, there is a 
notable increase in monthly precipitation.

The mean monthly precipitation for both the HadCM3 
and CGCM3 models is presented in Fig. 5 and Fig. 6, re-
spectively. Both models showed seasonal precipitation 

changes over three investigated time periods. During 
the monsoon months of time periods 2 and 3, the in-
creases in monthly precipitation are 6.7% and 12.4% 
(HadCM3, A2 scenario) and 11.5% and 14.2% (HadCM3, 
B2 scenario), respectively (see Fig. 5). However, Fig. 6 
shows that the results of CGCM3 highlighting the in-
crease in the monthly precipitation for time periods 
2 and 3 during non-monsoon months are 3.84% and 
10.3% (CGCM3, A1B scenario) and 5.76% and 12.27%, 
(CGCM3, A2 scenario) respectively, as shown in Fig. 6.

According to the A2 and B2 scenarios in the HadCM3 
model, there will be a notable rise in precipitation in 
August (7.63–22.38 mm), September (13.84–28.54 
mm), and October (8.39–19.03 mm) with various 
amounts predicted. The A2 and B2 scenarios exhibit a 
reduction of 3.6–6.4 mm and 4.3–7.9 mm, respectively, 
in the months of May and June. Similar increases in 
the mean monthly precipitation were noted in CGCM3 
under A2 and A1B scenarios in the 2020s, 2050s, and 
2080s for the months of June (9.23–26.00 mm), July 
(5.52–19.81 mm), August (10–16.8 mm), and Sep-
tember (6.29–17.2 mm). In April (3.52–6.64 mm) and 
May (2.72–7.64 mm), the CGCM3 model predicts lower 
mean monthly precipitation in the A1 and A1B scenari-
os. Under both models, there is a rise in the anticipated 
precipitation throughout the monsoon season (June, 
July, August, and September).

Fig. 3. Mean monthly change in projected precipitation under A2 and B2 scenarios of the HadCM3 model
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Fig. 4. Mean monthly change in projected precipitation under A1B and A2 scenario of the CGCM3 model

Fig. 5. Observed monthly mean precipitation compared to a downscaled precipitation of the HadCM3 model for A2 and B2 scenarios over 
three investigated time periods

Fig. 6. Observed monthly mean precipitation compared to a downscaled precipitation of the CGCM3 model for A1B and A2 scenarios over 
three investigated time periods
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Evaluation of precipitation changes on a yearly basis

The downscaled study results show an overall increase 
in the mean annual rainfall under the CGCM3 A1B and 
A2 scenarios of 12.0%, 14.6%, 17.1%, and 13.2%, 15.0%, 
and 18.0%, respectively, during the 2020s, 2050s, and 
2080s compared to the base period; corresponding in-
creases under the HadCM3 A2 and B2 scenarios were 
10.0%, 12.3%, 18.6%, and 11.2%, 14.0%, 19.4%, respec-
tively, during the 2020s, 2050s, and 2080s about the 
base period. The A2 scenario reports a notable rise in 
the mean annual precipitation under both models over 
the 2020s, 2050s, and 2080s.

Observed changes in dry and wet spells
Maximum dry and wet spell lengths of HadCM3 for the 
A2 and B2 scenarios were calculated and are repre-
sented graphically in Fig. 7. The yearly mean length of 
the maximum dry spell length in the HadCM3 model 
grows in the first period under the A2 scenario and de-
creases in the second and third under the B2 scenario. 
Time period 3 (2071–2099) shows an increase in the 

Fig. 7. Monthly projected maximum dry and wet spells of HadCM3 for A2 and B2 scenarios in number of days

wet spell length in A2 and B2 scenarios, whereas dry 
spell length shows a decrease in the third time peri-
od (Fig. 7). In both cases, the month of July or August 
shows the most extended wet spells. The maximum 
dry spell length is the most prolonged dry spell with 
amounts below the wet-day threshold. The HadCM3 
model shows comparatively less impact in dry spell 
length forecast than the CGCM3 model. Maximum wet 
spell length is the longest, with amounts more sig-
nificant than or equal to the wet-day threshold. Fig. 7 
explains the mean maximum monthly dry spell length 
in October and November in the A2 scenario and from 
October to December in the B2 scenario.

Mean monthly dry and wet spells in CGCM3 for A2 and 
A1B scenarios were obtained, as discussed in Fig. 8. 
The maximum dry spell showed a decrease in A2 and 
A1B scenarios in almost all months except February 
in time period 3, with almost increasing trends in time 
period 1 (2011–2040). The CGCM3 model exhibits a 
higher rise in dry spell length forecast than the Had-
CM3 model. In the CGCM3 A2 scenario, wet spell length 
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Fig. 8. Monthly projected max dry and wet spells of CGCM3 for A2 and A1B scenario in number of days

increased from June to September except for August 
in time period 1, 2 and 3. Also, in the A1B scenario, 
similar trends in the monsoon period were observed. 

Fig. 8 highlights the CGCM3 model predictions that the 
rainy spell will get shorter in the 2020s and 2050s be-
fore getting longer in the 2080s.

Conclusions
A stochastic weather generator and multilinear re-
gression algorithm are combined to create the SDSM 
tool. The results indicate that the monthly sub-model 
is more effective for predicting precipitation. Time peri-
od 3 (2071–2099) showed an increasing trend of mon-
soon rainfall. Both models showed increasing rainfall 
trends for all the scenarios. The mean annual rainfall 
trends are likely to increase by 10.0% to 18.6% as per 
the A2 scenario and about 11.2% to 19.4% as per the 
B2 scenario of HadCM3, respectively, over 2011–2099. 
However, the CGCM3 shows an increasing trend in an-
nual precipitation from 12.0% to 17.1% under A1B and 

13.0% to 18.0% under A2 scenarios, respectively. As 
shown by model results, Fig. 3 and Fig. 4 show rainfall 
variations over each investigated time period for two 
GCMs.

The study uses the SDSM, a hybrid downscaling strat-
egy that combines MLR and SWG approaches, to es-
timate long-term precipitation scenarios (2011–2040, 
2041–2070, and 2071–2099) in West Central India. The 
monthly SDSM sub-model shows efficiency in down-
scaling precipitation using predictors from the CGCM3 
and HadCM3 models under the A2, A1B, and B2 emis-
sion scenarios. The results show a constant increase 
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in the mean monthly precipitation across both models 
and all emission scenarios for the future (2020s, 2050s, 
and 2080s). Notably, the CGCM3 model demonstrates a 
faster rate of rise than HadCM3. While in HadCM3, the 
augmentation is more noticeable in August, September, 
and October under the A2 and B2 scenarios. Recogniz-
ing the uncertainties associated with the CGCM3 and 
HadCM3 models, as well as the limits of SDSM in down-
scaling, the study emphasizes the higher reliability of 
results, as seen by a higher R2 during validation. A1B 
and B2 show the greatest and lowest predicted incre-
ments, respectively, with carbon dioxide (CO2) concen-
trations of 720 ppm and 450 ppm. Despite the fact that 
the A2 scenario in this study had the highest CO2 levels 
(850 ppm), the A1B scenario shows the highest rise.

Analysis of precipitation patterns indicated significant 
differences among the models. In CGCM3, June, July, 
and August depict a considerable rise under the A1 and 
A1B scenarios. A notable increase is seen in the Had-
CM3 model in August, September, and October for both 
the A2 and B2 scenarios. The CGCM3 model exhibits a 
higher rise in dry spell length forecast than the Had-
CM3 model. The two models have different outcomes 
in wet spell length. Wet spell length decreases in the 
2020s and 2050s but increases in the 2080s, accord-
ing to CGCM3. However, the HadCM3 model predicts a 
rise in the wet spell length throughout the three time 
periods. Different patterns are shown in the predicted 
future by both models.

Dry spell length projection significantly increases 
CGCM3 than HadCM3; however, wet spell duration 

shows distinct trends. CGCM3 shows that wet spell 
length decreases in the 2020s and 2050s but increases 
in the 2080s, whereas HadCM3 shows that it increases 
over all three time periods.

Future climate change may be uncertain, reflecting on 
rainfall scenarios, but significant changes in the future 
scenarios, as per model simulations, may show an 
impact on future water issues. These types of studies 
are helpful in adopting appropriate water management 
strategies for the future. It is assumed that the relation 
between predictor (large-scale atmospheric variables) 
and predictand for generating future scenarios remains 
the same over time. However, significant climatic 
changes may cause future results to decline. Thus, the 
predicted rainfall scenarios for the West Central region 
will be helpful in water management processes. The 
evaluation of future climate scenarios along with the 
application of a multilinear regression technique and 
a stochastic weather generator within the SDSM tool 
suggest potential increases in annual precipitation and 
monsoon rainfall for the West Central region of India. 
This research will be useful for development planners, 
decision-makers, and stakeholders, as it provides vital 
insights for developing region-wise water manage-
ment policies to adapt to climate change in the West 
Central India region.
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