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Contaminated river sediment poses a threat to aquatic life and public health. The focus of this study was to in-
vestigate possible contamination of sediments from the Warri River. Triplicate samples were collected from ten 
sites of intense industrial activities. The sediments were analysed for heavy metals (HMs), anions, and physico-
chemical properties, including total hydrocarbon content (THC), an indicator of hydrocarbon contamination. The 
contamination level was evaluated using the following indices: contamination factor index (CF), geo-accumulation 
index (Igeo), enrichment factor (EF), ecological risk index (ERI), modified degree of contamination (mCd), pollution 
load index (PLI), risk index (RI) and sediment quality guidelines (SQG). Principal component analysis (PCA) and 
hierarchical clustering analysis (HCA) were used to identify the sources of HM contamination. The aggregate con-
tamination indices (mCd, PLI and RI) indicate no contamination/pollution or ecological risk. Similarly, the single 
contamination indices (CF, Igeo, and ERI) showed low contamination and ecological risk for almost all heavy metals 
except for Cd, which was high in many sample locations. Most of the heavy metals exhibited values below both the 
threshold-effects level (TEL) and the probable-effects level (PEL), except for Cd, where 80% of locations recorded 
levels between TEL and PEL, suggesting possible ecological risk for Cd. PCA suggests that PC1, loaded with Fe, 
Zn, Ni, Cd and Cr, indicates anthropogenic activity. PC2, loaded with Mn and Pb, suggests both anthropogenic and 
geogenic origins. In conclusion, the possible HM contamination necessitates urgent government intervention to 
protect aquatic ecosystems and public health.

Keywords: Warri River, heavy metal contamination, sediment quality, pollution indices, anthropogenic processes, 
industrial activities.
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Introduction
The sedimentation of weathered and eroded minerals, 
organic matter, and soils results in the formation of 
sediments. These are naturally essential and integral 
components of rivers, lakes, etc. (Hauer et al., 2018; 
Bylak and Kukuła, 2022). They serve as a source of 
substrate nutrients as well as the micro- and macrobi-
ota that form the backbone of support for aquatic living 
resources. The origin of heavy metals (HMs) in river 
sediments can be traced to geogenic (e.g., weathering 
and erosion) and anthropogenic (e.g., mining, agricul-
ture, industry) processes (Vertimurugan et al., 2018; 
Akinwole et al., 2022). HMs are particularly concerning 
due to their toxicity, persistence, and non-degradability 
in the environment (Ali et al., 2019; Briffa et al., 2020). 
Lead, nickel, and mercury demonstrate high toxicity 
even at minute levels (Algül and Beyhan, 2020).

HMs enter river systems through several pathways, 
such as surface runoff, industrial effluents, sewage 
discharges, direct atmospheric deposition, or sedi-
mentation. They are usually precipitated, adsorbed, 
and stored in the sediments at the bottom of the river 
systems (HM sinks), and may re-enter the river water 
through dissolution under different redox conditions 
(Jiao et al., 2017; Fang et al., 2019; Nawrot et al., 2021; 
Li et al., 2022; Chen et al., 2022). HMs enter the food 
chain through plants and sediment-eating and bur-
rowing organisms, which consume sediment and soil 
potentially containing HMs. Subsequently, these or-
ganisms are consumed by other organisms higher up 
in the food chain, leading to bioaccumulation. Other or-
ganometallic compounds that may be more toxic could 
be formed from HMs (Gao and Chen, 2012). When toxic 
metals bioaccumulate in aquatic biota, they are even-
tually transferred to human beings through the food 
chain or direct absorption (Chen et al., 2016; Sonone et 
al., 2021; Tahity et al., 2022). Heavy metal exposure in 
humans has been associated with several detrimental 
health effects such as cancer, diminished IQ, organ and 
neurological system damage, and stillbirth (Li et al., 
2022). Therefore, the health of aquatic ecosystems is 
threatened by heavy metal contamination of river sed-
iments, making sediment crucial in establishing the 
pattern of aquatic environmental contamination. Sed-
iment quality is also a good indicator of water column 
contamination because it provides a clearer view of the 
nature and sources of contaminants in a water body. It 

reflects the history of pollution and provides a record of 
water quality of rivers (Aladesanmi et al., 2016; Akkajit 
et al., 2018). The analysis of heavy metals in sediments 
enables the identification of contaminants that may be 
absent or present in only trace amounts in the water 
column.

Many indices of contamination have been developed 
to assess the level of contamination at a given site 
(soil, sediments, water). The most common include 
the geo-accumulation index (Igeo), pollution load index 
(PLI), contamination factor index (CF), modified degree 
of contamination (mCd), enrichment factor (EF), and 
ecological risk index (ERI) (Attah et al., 2021; Chen et 
al., 2022; Li et al., 2022; Anoop et al., 2022; Chineme-
lu and Okumoko, 2022). Combining several indices of 
contamination when evaluating the level of contamina-
tion within a site can provide a robust and accurate pic-
ture of the contamination at a given location (Luo et al., 
2021). Recently, several researchers have investigated 
the quality of river sediments. For example, Li et al. 
(2022) have characterized the ecological risk of sedi-
ments from the Yellow River in China, finding Pb, Cr, Ni, 
and V to pose ecological risk. Chen et al. (2022) have in-
vestigated an HM pollution risk in sediments from Lake 
Gehu in China and found a serious Cd pollution. Chine-
melu and Okumoko (2022) used Igeo, CF, and EF of HMs 
to evaluate the sediments of the Warri River, revealing 
a geogenic origin for the HMs. Malvandi (2017) have 
examined HM contamination in Zarrin-Gol River (Iran) 
sediments using four contamination indices, including 
CF, EF, PLI, and Igeo. Similarly, Alahabadi and Malvandi 
(2018) have assessed HMs in sediments from the Tajan 
River (Iran) using CF, Igeo, ERI, and PLI.

To investigate and pinpoint the sources of HMs in river 
sediments, multivariate statistical analysis can be uti-
lized (Vetrimurugan et al., 2017; Xiao et al., 2019). This 
may be important in designing any river basin manage-
ment plan that addresses contamination (Chen et al., 
2022). Several studies have utilised multivariate sta-
tistical analysis to infer HM sources in sediments. For 
example, Li et al. (2022) have used Pearson correlation 
analysis, principal component analysis (PCA), and clus-
ter analysis to investigate the possible sources of HMs 
in Yellow River sediment in China. A high correlation 
coefficient indicated interrelated transportation, princi-
pal components represented similarity of sources, and 
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cluster analysis was used for categorizing heavy met-
als and sediment samples. Similarly, Chen et al. (2022) 
have used correlation analysis and the positive matrix 
factorization (PMF) model to investigate the sources 
of HMs in Lake Gehu. Dye and print textiles and metal 
manufacturing plants were identified as the anthropo-
genic sources of the HMs. Chinemelu and Okumoko 
(2022) have used cluster analysis to reveal the sources 
of HMs in the Warri River. Fe was attributed to geogenic 
sources, while Cd, As, Ni, Pb, Cr, Cu, and Zn were attrib-
uted to anthropogenic sources.

The population of inhabitants around the Warri River 
catchment has grown recently due to urbanization. 
This growth has led to a corresponding increase in the 
industrial and domestic waste that the river receives 
from various sources (Chinemelu and Okumoko, 2022). 
One of the main sources of pollution in the area is the 
activities of crude oil and related industries. Despite the 
significance of the Warri River to local populations, not 
much is known about the river’s health because there 
have been few studies on it. Understanding the distri-
bution and sources of HMs in the river sediments is 
important for safeguarding the aquatic ecosystem and 
ensuring public safety. Adequate measures need to be 
taken to reverse any detected contamination or pollu-
tion trends. The objectives of this research are to inves-
tigate HM variation and distribution, evaluate the level 
of contamination and environmental risk, and infer the 
sources of HMs in the Warri River sediments.

Methods
Study area
The studied area of the Warri River (Fig. 1) is located 
between latitude 5°25’00”N – 5°45’00”N and longitude 
5°25’00”E – 5°45’00”E, with an area of approximately 
1400 km2. The Warri River is a relatively large body of 
water and one of the most important coastal rivers in 
the Niger Delta region in terms of navigation, with two 
ports sited on the river. The headwater of the Warri 
River is located at Utagba-Uno and flows south-west-
ward, where it empties into the Forcados River. The 
studied area is characterized by a tropical climate with 
an annual rainfall of 3000 mm and an average temper-
ature 28°C (Olele, 2011; Ejere et al., 2014; Mogborukor, 
2022). Geologically, the Warri River is located within 
the Niger-Delta Basin, which has been documented to 

consist of approximately 8 km of Tertiary to Quater-
nary sedimentary rock layers. These are divided into 
Akata, Agbada, and Benin Formations with decreasing 
age (Weber, 1975). The Warri River flows on the Som-
breiro-Deltaic Plain, which consists of up to 30 m of 
fine-medium and coarse-grained sands, with discon-
tinuous silty clay-to-clay layers. In boreholes up to 100 
m in depth, black-grey clays interbed majorly sand 
units (Akpoborie, 2012; Akpoborie, 1996).

Sampling and laboratory procedures
Samples were collected in October 2022 and June 
2023. Ten sampling points along the Warri River were 
surveyed and distributed based on major human activ-
ities such as tank farms, transportation, human settle-
ments, and ecological conditions (Fig. 1). The various 
activities and specific coordinate information of the 
sampling points are shown in Table 1. Sediment sam-
ples were collected at ten sampling points in triplicate, 
resulting in thirty (30) sediment samples. These were 
obtained using a Van Veen grab sampler (250 cm²) from 
the first 10 cm of the sediment surface and transferred 
into well-labelled polyethylene sample bags, without 
any chemical pre-treatment. The samples were stored 
in a portable refrigerator at 1 to 4°C and transported 
to the laboratory, Jacio Environmental Limited, Effu-
run, Nigeria, where all analyses were performed. In the 
laboratory, the sediments were spread on plastic films 
to air-dry at room temperature; stones, branches, and 
other plant materials were removed manually. After 

Fig. 1. Map of the study area showing sediment sampling points
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Table 1. Sediment sample points coordinates and surrounding 
major human activity

ID Coordinates
Sample de-

scription
Human activity

SED1
5°30'54.840"N 
5°43'55.292"E

Miller Jetty, 
Warri

Sales of petroleum 
products such as 
diesel, kerosene, boats 
and vessels transpor-
tation, mini market

SED2
5°32'10.367"N 
5°40'30.646"E

NPA, Warri
Boats and vessels 
anchor there, though 
not fully operational

SED3
5°30'52.814"N 
5°42'47.273"E

WRPC

Warri refinery and 
petrochemical 
company with 
petroleum vessels 
anchoring at its jetty

SED4
5°32'0.870"N 
5°41'48.136"E

Ogunu-
Ugbangwue 
boat yard, 
Warri

Boat and vessels 
anchoring

SED5
5°32'3.340"N 
5°41'12.421"E

Tank-farm 
Depot, Iffie 
community

For storage, sales and 
distribution of petrole-
um products such as 
Gas, PMS, DKP, AGO

SED6
5°32'38.073"N 
5°39'47.948"E

Iffie-
community 
extension

Industrial activities 
related to tank-farms 
depot

SED7
5°31'56.658"N 
5°32'11.291"E

Batan
Crude oil exploration 
and production

SED8
5°35'55.767"N 
5°27'19.951"E

Egwa-1 flow 
station

Crude oil exploration 
and production

SED9
5°37'47.024"N 
5°26'29.403"E

Egwa 
extension

Crude oil exploration 
and production

SED10
5°36'4.667"N 
5°32'21.485"E

Ikorokiri 
community

Fishing

PMS, premium motor spirit; DKP, diesel kerosene premium; AGO, 
automotive gas oil.

the samples were well dried, they were ground with 
an agate mortar and sieved through a 230 ASTM sieve 
mesh (mesh size 63 µm) to remove small debris.

In the process of determining HMs in sediment sam-
ples, 1 g of the sample was digested in Teflon tubes 
with a mixture of 2 mL of HNO3, 5 mL of HClO4, and 2 
mL of HF. The digestion process was carried out on a 
hotplate at 140°C for 20 to 30 minutes, which is gen-
erally considered sufficient for complete digestion. 
After digestion and cooling, the extracted solutions 

were filtered through filter paper and diluted with dou-
ble deionized water to a volume of 25 mL (Bai et al., 
2011). Heavy metal concentrations were determined 
after digestion using a Flame Atomic Absorption Spec-
trometer (Varian SpectrAA 600 model, Varian Inc., Palo 
Alto, California, USA). The analytical method has the 
following limits of detection (LOD): 0.072 mg/kg for Cr, 
0.042 mg/kg for Mn, 0.105 mg/kg for Ni, 0.008 mg/kg 
for Cu, 0.089 mg/kg for Zn, 0.016 mg/kg for Cd, and 
0.069 mg/kg for Pb. Values below detection limits were 
replaced by half the detection limit values in line with 
the recommendation of Farnham et al. (2002).

The physicochemical properties of the sediment samples 
were also determined, including pH, electrical conduc-
tivity (EC), total organic carbon (TOC), moisture content 
(MC), chloride (Cl⁻), sulphate (SO4

2⁻), and nitrate (NO3⁻), to-
tal phosphate (TP), and total hydrocarbon content (THC). 
The Hanna HI9829 multi-parameter meter was utilized 
for measuring pH and EC. The meter was calibrated us-
ing Hanna Quick Cal solution (HI9829-27) (Omoruyi and 
Amadi, 2022). To measure pH and EC, a sediment-water 
suspension (using distilled water) in a 1:2 ratio (10g:20g) 
was prepared and allowed to stand for 30 minutes. The 
meter probe was inserted into the mixture and allowed 
to stabilize in the sediment-water sample mixture for 
5 minutes before recording readings (Sathyanarayana, 
2020). TOC determination involved the use of the Walk-
ley and Black (1934) chromic acid wet oxidation method 
using a finely divided sieved sediment sample. Then, 5 g 
of representative samples were used for THC determi-
nation based on the ASTM D3921 method using infrared 
spectrophotometry with the Infracal-2 instrument. Oven 
drying at 105°C to a constant weight was done to deter-
mine the moisture content of sediments. ASTM D512, 
ASTM D516, and ASTM D3867 standards were employed 
for the determination of Cl⁻, SO4

2⁻, and NO3⁻ ions in the 
sediments, respectively. TP was determined using the 
Bray P-1 method. Further, 10 g of the air-dried sediment 
was used, and the extracted solution of the sediment 
was treated. The absorbance was measured after 5 min-
utes at a wavelength of 880 nm using a 752N Searchtech 
Instrument UV-VIS spectrophotometer.

Data analysis
In this study, the quality of sediments was evaluat-
ed using empirical sediment quality guidelines (SQG) 
based on threshold-effects level (TEL) and probable-ef-
fects level (PEL) recommendations from the Canadian 
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Freshwater Sediment Guideline (MacDonald et al., 
1996). TEL is the concentration of sediment contami-
nation at which benthic organisms start to show toxic 
responses, while PEL is the concentration at which a 
significant proportion of the benthic population exhibits 
toxic responses. The TEL and PEL are as follows (mg/
kg): Cd (TEL: 0.6, PEL: 3.53), Cr (TEL: 37.3, PEL: 90), Cu 
(TEL: 35.7, PEL: 197), Pb (TEL: 35, PEL: 91.3), Ni (TEL: 
18, PEL: 36), and Zn (TEL: 123, PEL: 315) (CCME, 1999; 
Thompson and Wasserman, 2015).

The CF is the ratio of heavy metal concentration to its 
background values in a soil or sediment sample. CF 
was proposed by Håkanson (1980) and is a simplistic 
and reliable measure of anthropogenic influences at a 
given site (Usman et al., 2021). The background values 
for this study are average shale values (ASV) of Ture-
kian and Wedepohl (1961). The Igeo, proposed by Müller 
(1981), is another method that involves normalization of 
the concentration of HMs in a sample with background 
values. However, it differs from CF in that it involves nor-
malization by a factor of 1.5 and taking the log2 of the 
normalized values. Chester and Stoner (1973) proposed 
the EF as a method to assess heavy metal contamination 

in sediment/soil samples. EF is defined as the ratio of a 
HM concentration in a sample, normalized against a re-
ference element concentration (typically Fe or Al) in the 
same sample, to the ratio of the heavy metal concentra-
tion normalized against Fe or Al in the background. For 
this study, Fe was the normalizing element. 

Tomlinson et al. (1980) proposed the PLI as a method 
to assess heavy metal contamination in sediment/soil 
samples. PLI is defined as the nth root of the product of 
computed CFs for each heavy metal in a sample. The 
mCd is a method proposed by Abrahim (2005) to assess 
heavy metal contamination in sediment/soil samples. 
It is derived from Hakanson’s Degree of Contamination 
(Håkanson, 1980) and is calculated as the average of 
CFs for each HM in a sample. The ERI involves the mul-
tiplication of the CF with a toxic response factor, which 
factors in the migration, transformation, and toxicity of 
certain HMs (Håkanson, 1980; Lin et al., 2016). The toxic 
response factor for Cd, Cu, Cr, Mn, Ni, Zn, and Pb are 10, 
5, 2, 1, 5, 1, and 5, respectively (Chai et al., 2017). The RI 
is the summation of the ERI of each sediment/soil sam-
ple. The equation and classification ranges of CF, Igeo, EF, 
PLI, mCd, ERI and RI are presented in Table 2.

Table 2. Pollution indices (PI) computation and classification
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Three statistical methods were employed to infer the 
source of the heavy metals: correlation analysis (CA) 
using the Pearson method, principal component analy-
sis (PCA) with varimax rotation, and hierarchical cluster 
analysis (HCA). PCA reduces the number of variables 
into a few uncorrelated components with eigenvalues 
greater than 1, while preserving a high percentage of 
information or variability in the original variables. The 
new components are interpreted based on their possible 
meaning, which in this study was related to the source 
of HMs. CA is a bivariate measure of the relationship be-
tween two variables, ranging from –1 to 1, with values 
close to 0 indicating no relationship. Similarity in trans-
portation was inferred in this study for CA coefficients 
that are above 0.65 at 95% and 99.9% confidence lev-
els. HCA involves the determination of similar sediment 
samples/sites and related HMs, with similarity of source 
being inferred and presented in a dendrogram. The dis-
tance between samples/sites was measured with the 
Euclidean method, and the agglomerative method of 
linkages (Ward and Hook, 1963) was used.

Results and Discussion
Physicochemical parameter in sediment
The average values and standard deviations (± SD) of 
physicochemical parameters from triplicate sediment 
samples from the Warri River are presented in Table 3. 
The pH, electrical conductivity (EC), and moisture con-
tent (MC) of sediments ranged from 4.08 to 6.08, 616.67 

to 6029.67 µS/cm, and 21.7 to 26.07%, respectively. 
The observed pH levels suggest acidic to slightly acidic 
conditions, particularly in areas associated with crude 
oil exploration and production, such as SED7 (4.67), 
SED8 (4.59), and SED9 (4.08). These observations could 
imply a connection between sediment pH and industri-
al activities near the sampling points. These pH values 
are also similar to findings that have been reported 
in Niger Delta sediments (Iwegbue, 2007; Akporido 
and Ipeaiyeda, 2014; Ibanga and Nkwoji, 2019; Onajite 
and Ovie, 2022; Eguvbe, 2023; Ibekwe, 2023). The EC 
values recorded displayed a significant rise from up-
stream to downstream (SED1 to SED10), particularly 
from SED7 (3260.67 µS/cm) to SED9 (6029.67 µS/cm), 
suggesting similar potential contamination sources 
as the pH. These sources could be effluents or the in-
discriminate discharge of drilling fluids and untreated 
produced water, notably oilfield brines containing salts, 
minerals, heavy metals, and trace metal elements. 
These elements, being electrically conductive and 
dense, settle and remain in sediment. The higher EC 
values could also be attributed to estuarine conditions 
resulting from the intrusion of saline water from the 
Atlantic Ocean during high tides, flushing into fresh-
water upstream (Davies and Tawari, 2010). These EC 
values are consistent with earlier research by Davies 
and Tawari (2010), who found EC values ranging from 
4080 to 4577.78 µS/cm in the sediment of Trans-Ok-
poka Creek, Upper Bonny Estuary. Olumukoro et al. 
(2022) have similarly noted high EC values at Otumara, 

Table 3. Average ± SD of the physicochemical measures of the sediment samples

ID pH
EC

(µS/cm)
Cl-

(mg/kg)
SO4

2-

(mg/kg)
TOC
(%)

MC  
(%)

NO3
-

(mg/kg)
PO4

3-

(mg/kg)
THC

(mg/kg)

SED1 4.78 ± 0.21 616.67 ± 2.52 218.61 ± 10.24 134.62 ± 1.47 1.02 ± 0.03 23.71 ± 0.65 4.88 ± 0.19 2.03 ± 0.08 99.64 ± 4.17

SED2 5.95 ± 0.08 921.33 ± 2.31 327.02 ± 9.00 161.87 ± 2.42 0.98 ± 0.01 26.07 ± 0.32 4.12 ± 0.13 1.46 ± 0.09 85.8 ± 1.45

SED3 4.63 ± 0.03 1401.67 ± 3.06 531.75 ± 0.02 209.09 ± 1.80 3.19 ± 0.06 22.07 ± 1.00 4.04 ± 0.01 1.98 ± 0.10 40.89 ± 1.57

SED4 6.06 ± 0.01 1623.67 ± 4.04 667.64 ± 10.23 228.5 ± 2.45 1.87 ± 0.00 23.05 ± 1.45 3.40 ± 0.02 1.96 ± 0.07 38.12 ± 1.03

SED5 6.08 ± 0.03 1301 ± 1.73 492.76 ± 12.78 197.14 ± 2.75 2.31 ± 0.04 21.7 ± 0.81 3.46 ± 0.06 1.67 ± 0.06 36.95 ± 0.67

SED6 5.09 ± 0.04 1627 ± 1.73 710.18 ± 5.41 260.21 ± 3.11 2.89 ± 0.07 25.33 ± 0.23 4.13 ± 0.14 2.18 ± 0.09 51.24 ± 1.97

SED7 4.67 ± 0.11 3260.67 ± 2.08 1022.14 ± 10.23 671.74 ± 2.95 4.05 ± 0.02 24.1 ± 0.70 3.62 ± 0.40 1.91 ± 0.11 50.91 ± 1.78

SED8 4.59 ± 0.27 5177.67 ± 3.21 2310.68 ± 7.3 1410.71 ± 10.09 3.75 ± 0.08 24.99 ± 0.91 3.49 ± 0.00 1.86 ± 0.09 209.17 ± 9.81

SED9 4.08 ± 0.09 6029.67 ± 45.94 2268.8 ± 17.73 1308.09 ± 1.47 2.98 ± 0.06 25.51 ± 0.66 4.00 ± 0.64 2.04 ± 0.07 223.39 ± 3.39

SED10 5.17 ± 0.29 5661.67 ± 565.23 2448.08 ± 3.52 1463.66 ± 32.62 3.8 ± 0.10 25.17 ± 0.46 3.99 ± 0.07 2.05 ± 0.06 258.08 ± 1.92
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Saghara, and Escravos flow stations in Delta State, 
with mean values of 6058.33, 11 907.50, and 10 223.33 
µS/cm, respectively. However, these results differ from 
those reported by Chinemelu and Okumoko (2022) 
(85.2–556.7 µS/cm) in Warri River sediments, Onajite 
and Ovie (2015) in Okpare Creek (131.99–295.16 µS/
cm), and Adesuyi et al. (2015) (23.0–567.0 µS/cm) in 
Nwaja Creek.

The TOC levels in the sediments ranged from 0.98% at 
SED2 to 4.05% at SED7. The THC varied from 38.12 mg/
kg at SED4 to 258.08 mg/kg at SED10. Notably, the low-
est observed value of THC is higher than the 30 mg/kg 
limit recommended by the Nigeria Federal Ministry of 
Environment (FME, 1991). The high THC concentrations 
(> 200 mg/kg) detected at SED8 and SED9 suggest sig-
nificant contributions from petroleum exploration and 
production activities in the vicinity. This indicates a con-
siderable impact of human activities on the sediment 
quality within the Warri River. However, the THC-to-TOC 
ratios, which ranged from 11.99 to 77.7, indicated lit-
tle to no hydrocarbon pollution, as they are below the 
threshold of 100 (Marchand and Roucache, 1981). The 
fluctuating levels of TOC observed align with patterns 
found in various settings across the Niger Delta region. 
Upstream of the Sombreiro River, where numerous pe-
troleum installations are present, the average TOC val-
ues were reported as 1.3% for the wet season and 2.6% 
for the dry season (Ehi-Douglas et al., 2018). At Nwaja 
Creek, TOC values ranged from 1.99% to 3.65% (Ades-
uyi et al., 2016). In contrast, THC in this study showed 
wide variation across the region. In the sediments of 
Kau/Kinabere Creek, THC ranged from 1403 to 3755 
mg/kg, which are higher than the values reported in 
the current study. These elevated THC levels were at-
tributed to pollution from illegal oil bunkering and re-
fining activities (Wokoma, 2015). Similarly, in Mgboshi-
mili Creek, the average THC of sediment was found to 
be 495.49 mg/kg, with a range of 2.23 to 1190.58 mg/
kg (Owoh-Etete et al., 2023).

The Cl⁻, SO4
2⁻, NO3

2⁻, and PO4
3⁻ concentrations recorded 

in the sediments of the Warri River are in a wide range, 
reflecting the diverse environmental influences pres-
ent across various sampling sites. The observed range 
of Cl⁻ and SO₄²⁻ concentrations were 218.61 to 2448.08 
mg/kg and 134.62 to 1463.66 mg/kg, respectively, with 
the highest values for both parameters observed at 
SED10 and the lowest values at SED1. NO₃⁻ and PO₄³⁻, 

which are essential plant nutrients, had concentra-
tions ranging from 3.4 mg/kg at SED4 to 4.88 mg/kg 
at SED1, and from 1.46 mg/kg at SED2 to 2.18 mg/kg 
at SED6, respectively. These results align with previous 
studies conducted in Niger Delta coastal areas, which 
have attributed the variations in chemical constitu-
ents and nutrient levels to both natural processes and 
human activities, including surface runoff, industrial 
effluents, domestic waste discharges, and industrial 
activities (Iyama and Edori, 2014; Ngoka et al., 2021). 
In the Sombreiro River, reported values for SO₄²⁻, NO₃⁻, 
and PO₄³⁻ were 21.0–30.0 mg/kg, 2.6–4.1 mg/kg, and 
8.90–15.7 mg/kg, respectively. The NO₃⁻ levels were 
similar to those reported in this study, while the SO₄²⁻ 
levels were lower and the PO₄³⁻ levels were higher. Al-
though SO₄²⁻ values in the region can vary widely, they 
are generally considered normal even when higher 
values are observed. The elevated levels of NO3⁻ and 
PO4

3⁻ in the Sombreiro River are attributed to inputs 
from agricultural runoff rich in super-phosphate ferti-
lizer (Ezekiel, 2011).

Heavy metals in sediments
Studies have indicated that over 99% of heavy met-
als entering aquatic ecosystems were stored in sed-
iments through various mechanisms and eventual-
ly transferred to humans via the food chain (Gwimbi 
et al., 2020; Xu et al., 2018; Algül and Beyhan, 2020). 
Therefore, analyzing sediment heavy metals provides 
a deeper understanding of the long-term pollution sta-
tus of aquatic environments. The average values and 
standard deviation (± SD) of the heavy metals of the 
triplicate sediment samples are presented in Table 4. 
The heavy metal concentrations showed significant var-
iability across different sediment locations. Cu ranged 
from 1.64 mg/kg in SED6 to 8.25 mg/kg in SED10. Fe 
levels were lowest in SED2 (484.93 mg/kg) and highest 
in SED7 (831.28 mg/kg). Zn was least concentrated in 
SED2 (13.2 mg/kg) and over three times higher in SED8 
(40.11 mg/kg). Mn, Pb, Ni, and Cd ranged from 15.06 
mg/kg (SED4) to 32.52 mg/kg (SED9), 1.99 mg/kg 
(SED1) to 6.99 mg/kg (SED9), 2.61 mg/kg (SED2) to 6.79 
mg/kg (SED7), and 0.01 mg/kg (SED1) to 2.63 mg/kg 
(SED8), respectively. Cr levels were highest in SED8 
(3.01 mg/kg), while SED1, SED5, and SED10 all had 
the lowest concentration (0.04 mg/kg). Overall, SED1 
and SED2, where the primary human activities were 
boat and vessel anchoring and transportation, had the 
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lowest levels of heavy metal concentration. The low-
est levels of Cu, Cd, and Cr occurred at SED1, while 
the lowest levels of Fe, Zn, and Ni occurred at SED2. 
As observed, SED7, SED8, and SED9, associated with 
crude oil exploration and production, had the highest 
heavy metal concentrations: SED7 had the highest Fe, 
Zn, and Ni; SED8 had the highest Zn and Cd; SED9 had 
the highest Pb and Mn. Surprisingly, SED10, associ-
ated with fishing, had the highest level of Cr. In com-
parative studies of Warri River sediment, previous re-
search has reported the highest values for Cu, Zn, Pb, 
Ni, and Cd at 19.43 mg/kg, 73.64 mg/kg, 7.05 mg/kg, 
7.1 mg/kg, and 15.91 mg/kg, respectively (Jire and 
Imeokparia, 2018). These values were 2.35, 1.84, 1.01, 
1.04, and 6.05 times higher than those found in the 
present study, suggesting that their sampling areas 
experienced more intense human activities, leading to 
greater heavy metal enrichment in the sediments. In a 
more recent study of Warri River sediment, the highest 
values for Pb, Cd, Cr, Ni, Cu, and Zn were 2.15 mg/kg, 
0.26 mg/kg, 0.88 mg/kg, 0.36 mg/kg, 3.22 mg/kg, and 
9.22 mg/kg, respectively (Chinemelu and Okumoko, 
2022). These values were 3.25, 3.5, 10.11, 3.42, 18.86, 
2.56, and 4.35 times lower than those reported in the 
present study. When compared with previous studies, 
the values of the current study suggest lower contam-
ination levels than reported in Jire and Imeokparia 
(2018) but higher than those reported in Chinemelu and 
Okumoko (2022), indicating variability in heavy metal 
contamination linked to differing intensities of human 
activity across study sites.

Table 4. Average ± SD of heavy metal in triplicate sediment samples

ID
Cu,

(mg/kg)
Fe,

(mg/kg)
Zn,

(mg/kg)
Mn,

(mg/kg)
Pb,

(mg/kg)
Ni,

(mg/kg)
Cd,

(mg/kg)
Cr,

(mg/kg)

SED1 3.37 ± 0.43 501.7 ± 11.12 19.03 ± 0.13 22.13 ± 0.25 1.99 ± 0.05 3.84 ± 0.17 0.01 ± 0.00 0.04 ± 0.00

SED2 5.69 ± 0.46 484.93 ± 9.45 13.2 ± 0.19 15.81 ± 0.01 2.53 ± 0.01 2.61 ± 0.06 0.57 ± 0.05 0.72 ± 0.59

SED3 2.76 ± 0.16 515.41 ± 7.69 14.36 ± 0.01 27.01 ± 0.42 3.24 ± 0.08 3.33 ± 0.04 0.75 ± 0.01 1.67 ± 0.02

SED4 3.07 ± 0.04 729.96 ± 31.76 20.73 ± 0.04 15.06 ± 0.24 2.54 ± 0.06 4.27 ± 0.07 1.36 ± 0.05 0.34 ± 0.06

SED5 2.00 ± 0.06 647.29 ± 8.93 13.99 ± 0.11 29.77 ± 0.01 5.90 ± 0.03 3.66 ± 0.18 0.61 ± 0.04 0.04 ± 0.00

SED6 1.64 ± 0.22 732.03 ± 3.17 16.2 ± 0.04 19.66 ± 0.75 2.10 ± 0.03 2.84 ± 0.24 0.71 ± 0.03 1.02 ± 0.05

SED7 4.06 ± 0.07 831.28 ± 4.23 38.79 ± 0.35 29.05 ± 0.27 4.92 ± 0.07 6.79 ± 0.10 2.25 ± 0.04 2.69 ± 0.07

SED8 5.18 ± 0.07 718.99 ± 7.52 40.11 ± 0.41 21.96 ± 0.24 3.58 ± 0.03 6.21 ± 0.12 2.63 ± 0.04 3.01 ± 0.04

SED9 6.66 ± 0.19 677.06 ± 11.24 27.94 ± 0.37 32.52 ± 0.47 6.99 ± 0.05 5.82 ± 0.02 1.85 ± 0.04 1.19 ± 0.19

SED10 8.25 ± 0.06 502.35 ± 10.21 23.21 ± 0.60 18.99 ± 0.04 4.14 ± 0.04 3.65 ± 0.01 1.13 ± 0.14 0.04 ± 0.00

Aggregate contamination indices
The aggregate contamination indices (PLI, mCd, RI) 
across the study locations (Fig. 2a-c) revealed that mCd 
ranged from 0.06 in SED1 to 1.21 in SED8. SED1 had 
the highest PLI, while SED7 had the lowest, with val-
ues ranging from 0.03 to 0.13. For RI, SED1 had the 
lowest, and SED8 had the highest, with values ranging 
from 1.72 to 90.11. Overall, SED8 stood out as a loca-
tion with substantial environmental risk. Classification 
of the sediment locations based on thresholds for mCd 
reveals that all the samples exhibited nil to low con-
tamination (mCd < 1.5). Similarly, based on PLI and RI, 
all the samples showed no pollution (PLI < 1) and low 
ecological risk (RI < 150). Related studies across the 
Niger Delta revealed various levels of sediment con-
tamination. In the Maa-Dee-Tai River, it was reported 
that the sediment PLI and RI indicated an absence of 
contamination (Bale and Adowei, 2024), which aligns 
with the findings of this study. At Kolo Creek, sediment 
PLI values ranged from 0.54 to 1.90, and RI values 
ranged from 24.30 to 87.10 (Uzoekwe and Aigberua, 
2019). A previous study on Warri River sediment re-
ported lower PLI values, ranging from 0.95 to 1.58 (Jire 
and Imeokparia, 2018). In the Ikwu River, RI values fell 
within the range of 300 to 600, which is considered very 
high, and PLI values ranged from 1366.80 to 1860.49 
(Anyanwu et al., 2023). All of these values from Kolo 
Creek, Warri River, and Ikwu River are significantly 
higher than those reported in this study. 



109Environmental Research, Engineering and Management          2024/80/4

Single contamination indices
Fig. 3a-d is a waterfall diagram that depicts the range 
values of sediment heavy metal single contamination 
indices CF, Igeo, ERI, and EF, respectively. The CF, Igeo, 
and ERI for Cu ranged from the lowest at SED6 (CF = 
0.04, Igeo = −5.4, ERI = 0.18) to the highest at SED10 
(CF = 0.18, Igeo = −3.0, ERI = 0.92); Pb was lowest at 
SED1 (CF = 0.10, Igeo = −3.9, ERI = 0.50) and highest at 
SED9 (CF = 0.35, Igeo = −2.1, ERI = 0.75); Zn has mini-
mum values at SED2 (CF = 0.14, Igeo = −3.4, ERI = 0.14) 
and maximum at SED8 (CF = 0.42, Igeo = −1.8, ERI = 
0.42); Cr ranged from the lowest at SED1 (CF = 0.000, 
Igeo = −11.7, ERI = 0.00) to the highest at SED8 (CF = 
0.033, Igeo = −5.5, ERI = 0.42); Cd was lowest at SED1 
(CF = 0.03, Igeo = −5.5, ERI  = 0.33) and highest at SED8 
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with the single contamination indices of all the heavy metals in this study, except for Cd, which was found to be 24 
unusually high. 25 
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The Box-Whisker plot in Fig. 4a-f shows the comparison of sediment heavy metal concentrations with 32 
sediment quality guidelines (SQG) (TEL and PEL). Only SED1 and SED2 had Cd concentrations below the TEL, 33 
while other sample locations fell between the TEL and PEL, indicating a possible toxic effect of Cd on sediment-34 
dwelling biota. The concentrations of other heavy metals in the samples were generally below their respective TEL 35 
values. In related studies in the Niger Delta, at Worji Creek and Bonny Estuary, all the heavy metals including Cr, 36 
Ni, Cu, Zn, Cd, and Pb had concentrations below PEL (Ibanga, 2016), aligning with the findings of this study. 37 
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Elsewhere, the Mohammad Abad River in Iran had Cr concentrations between TEL and PEL, while other metals 1 
were below TEL (Malvandi, 2021). In stream sediments from the Durgapur industrial zone in India, only Ni and 2 
Cu concentrations were below TEL, whereas Pb, Cd, and Cr exceeded PEL, highlighting significant contamination 3 
and potential ecological risk (Pobi et al., 2019). Sediments from a lake in East Antarctica had Pb concentrations 4 
below TEL, with Cr, Ni, and Zn mostly between TEL and PEL, and some samples of Cr and Ni exceeding PEL, 5 
indicating varied levels of contamination (Joju et al., 2024). These comparisons indicate varying degrees of heavy 6 
metal contamination across different regions where industrial activities contribute to differences in metal 7 
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The correlation coefficients (r) between heavy metals in the sediment samples, as presented in Table 5, 17 
revealed several significant relationships. Zn, Ni, and Cd exhibited very strong correlations, with Zn and Ni (0.94), 18 
Zn and Cd (0.91), and Ni and Cd (0.87) showing particularly high positive correlations. Additionally, Cr was 19 
significantly correlated with Zn (0.75), Ni (0.69), and Cd (0.78). Fe displayed strong positive correlations with Ni 20 
(0.66) and Cd (0.68). These strong correlations suggest that these elements might share common sources or 21 
environmental pathways. Other correlations between the heavy metals, though not significant, were mostly 22 
positive. Comparing these findings with other studies across the Niger Delta revealed some common patterns and 23 
notable differences. In the Warri River, significant correlations (P value < 0.01) for Cd with Zn and Ni, and Cu 24 
with Zn were observed in both dry and rainy seasons, aligning with the present study’s findings of strong Zn-Ni-25 
Cd inter-correlations (Chinemelu and Okumoko, 2022). In the Ethiope River, the correlations of Zn with Ni and 26 
Cd are reported as 0.44 and 0.05, respectively, while the strongest correlations were between Cr and Zn (0.66) and 27 
Cr and Ni (0.63) (Osakwe and Peretiemo-Clarke, 2013). This shows some variability, as the current study found 28 
stronger correlations involving Zn, Ni, and Cd. At Kolo Creek, strongly significant correlations (> 0.72) were 29 
reported between Cd, Pb, Ni, and Fe (Uzoekwe and Aigberua, 2019), consistent with the strong Fe-Ni and Fe-Cd 30 
correlations observed in the present study. However, at Agbor, significant correlations (> 0.7) were reported at 31 
two stations of Arogodo River between Cr, Cd, Cu, Fe, and Pb, although the correlations of Ni and Zn with other 32 
heavy metals showed greater variability (Issa et al., 2011). This suggests that while some heavy metals show 33 
consistent patterns of correlation across different studies, others may vary significantly, reflecting the influence of 34 
local environmental factors, sources of contamination, and sediment characteristics. 35 
 36 
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(CF = 0.10, Igeo = 2.5, ERI = 87.67); Ni had minimum val-
ues at SED2 (CF = 0.04, Igeo  = −5.3, ERI = 0.19) and max-
imum at SED7 (CF = 0.10, Igeo = −3.9, ERI = 0.50). EF var-
iability across locations: Cu ranged from 2.35 (SED6) to 
17.23 (SED10); Pb from 6.77 (SED6) to 24.36 (SED9); Cr 
from 0.03 (SED5) to 2.20 (SED8); Cd from 3.14 (SED1) 
to 575.51 (SED8); Ni from 2.69 (SED6) to 6.00 (SED8). 
Overall, SED8 showed consistently high contamination 
levels for multiple heavy metals, indicating it as a po-
tential hotspot for pollution, while SED1 and SED6 gen-
erally exhibited lower contamination levels. In terms 
of threshold value classification, single contamination 
indices (CF, Igeo, and ERI) revealed low contamination /  
ecological risk for Cu, Pb, Zn, Fe, Mn, Cr, and Ni. EF 
revealed minimal to significant enrichment of these 
heavy metals. However, all the single contamination 
indices revealed high levels of Cd contamination across 
several sampling sites (SED2–SED10). 

Previous studies of Warri River sediment and related 
studies across the Niger Delta revealed similar single 
contamination indices. CF less than 1 (low contamina-
tion), Igeo less than zero (no contamination), and min-
imal to moderate enrichment based on EF have been 
reported previously at Warri River (Jire and Umeok-
paria, 2018; Chinemelu and Okumoko, 2022). Similar 
results were obtained at Kolo Creek, with an addition-
al finding of ERI < 49 (low ecological risk) (Uzoekwe 
and Aigberua, 2019). Elsewhere, the sediments of the 
Zarrin-Gol River (Iran) all have negative Igeo, CF < 1, and 
mostly EF < 2 (minor contamination) (Malvandi, 2017). 
All these findings align with the single contamination 
indices of all the heavy metals in this study, except for 
Cd, which was found to be unusually high.

Sediment quality guidelines
The Box-Whisker plot in Fig. 4a-f shows the comparison 
of sediment heavy metal concentrations with sediment 
quality guidelines (SQG) (TEL and PEL). Only SED1 and 
SED2 had Cd concentrations below the TEL, while other 
sample locations fell between the TEL and PEL, indi-
cating a possible toxic effect of Cd on sediment-dwell-
ing biota. The concentrations of other heavy metals in 
the samples were generally below their respective TEL 
values. In related studies in the Niger Delta, at Worji 
Creek and Bonny Estuary, all the heavy metals includ-
ing Cr, Ni, Cu, Zn, Cd, and Pb had concentrations below 
PEL (Ibanga, 2016), aligning with the findings of this 
study. Elsewhere, the Mohammad Abad River in Iran 

Fig. 4. Boxplot showing comparison of sediment heavy metal con-
centration with SQG (TEL and PEL)  
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Table 5. Pearson correlation coefficient (r) of heavy metals 4 

 Cu Fe Zn Mn Pb Ni Cd Cr 
Cu 1        
Fe −0.30 1       
Zn 0.36 0.61 1      
Mn −0.07 0.26 0.26 1     
Pb 0.32 0.28 0.33 0.80* 1    
Ni 0.25 0.66* 0.94** 0.50 0.53 1   
Cd 0.35 0.68* 0.91** 0.25 0.44 0.87** 1  
Cr 0.02 0.54 0.75* 0.30 0.14 0.69* 0.78* 1 
*P value < 0.05 (statistically significant), and ** P value < 0.001 (highly statistically significant) 5 

 6 
Principal component analysis and cluster analysis 7 

 8 
PCA revealed that the first two principal components (PC) accounted for 74.07% of the variability, similar 9 

to the 74% of variability explained by the first two PCs in the PCA of HM in the Tajan River (Iran) (Alahabadi 10 
and Malvandi, 2018). Fig. 5 displayed the PCA variable map of the first 2 PCs. The first three PCs accounted for 11 
96.56% of the variability. PC1, PC2, and PC3 explained 55.88%, 18.19%, and 16.49% of the variance, 12 
respectively. PC1 is highly loaded with Fe, Zn, Ni, Cd, and Cr, similar to the high PC1 loading for Fe and Cr found 13 
in the Alahabadi and Malvandi (2018) study, attributing it to anthropogenic contamination. PC2 is loaded with Mn 14 
and Pb, and PC3 with Cu. This suggests three potential anthropogenic non-point HM sources in the area, possibly 15 
unrelated to petroleum activities. PC1 could be linked to agricultural and urban runoffs with improper sewage and 16 
industrial effluent disposal. A combination of PC1 and PC2, indicating both geogenic and anthropogenic input, 17 
may explain the Mn, Pb, and Cu contents in the sediments. This is supported by the positive matrix factorization 18 
(PMF) in the study of Mahanadi River sediment (India), which attributed Pb sources to a combination of 19 
anthropogenic and geogenic sources (Samal et al., 2022). A similar pattern of sediment heavy metal sources and 20 
distribution was identified in Okpare Creek, Niger Delta by Onajite and Ovie (2022). Interestingly, the factor 21 
analysis results from the study by Jire and Imeokparia (2018) identified four factors responsible for sediment 22 
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had Cr concentrations between TEL and PEL, while oth-
er metals were below TEL (Malvandi, 2021). In stream 
sediments from the Durgapur industrial zone in India, 
only Ni and Cu concentrations were below TEL, where-
as Pb, Cd, and Cr exceeded PEL, highlighting significant 
contamination and potential ecological risk (Pobi et al., 
2019). Sediments from a lake in East Antarctica had Pb 
concentrations below TEL, with Cr, Ni, and Zn mostly 
between TEL and PEL, and some samples of Cr and 
Ni exceeding PEL, indicating varied levels of contam-
ination (Joju et al., 2024). These comparisons indicate 
varying degrees of heavy metal contamination across 
different regions where industrial activities contribute 
to differences in metal concentrations. Our study in-
dicates moderate contamination for Cd and relatively 
lower contamination for other metals.
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Pearson correlation coefficient
The correlation coefficients (r) between heavy met-
als in the sediment samples, as presented in Table 5, 
revealed several significant relationships. Zn, Ni, and 
Cd exhibited very strong correlations, with Zn and Ni 
(0.94), Zn and Cd (0.91), and Ni and Cd (0.87) showing 
particularly high positive correlations. Additionally, Cr 
was significantly correlated with Zn (0.75), Ni (0.69), 
and Cd (0.78). Fe displayed strong positive correlations 
with Ni (0.66) and Cd (0.68). These strong correlations 
suggest that these elements might share common 
sources or environmental pathways. Other correlations 
between the heavy metals, though not significant, were 
mostly positive. Comparing these findings with other 
studies across the Niger Delta revealed some common 
patterns and notable differences. In the Warri River, 
significant correlations (P value < 0.01) for Cd with Zn 
and Ni, and Cu with Zn were observed in both dry and 
rainy seasons, aligning with the present study’s find-
ings of strong Zn-Ni-Cd inter-correlations (Chinemelu 
and Okumoko, 2022). In the Ethiope River, the correla-
tions of Zn with Ni and Cd are reported as 0.44 and 0.05, 
respectively, while the strongest correlations were be-
tween Cr and Zn (0.66) and Cr and Ni (0.63) (Osakwe and 
Peretiemo-Clarke, 2013). This shows some variability, 
as the current study found stronger correlations involv-
ing Zn, Ni, and Cd. At Kolo Creek, strongly significant 
correlations (> 0.72) were reported between Cd, Pb, 
Ni, and Fe (Uzoekwe and Aigberua, 2019), consistent 
with the strong Fe-Ni and Fe-Cd correlations observed 
in the present study. However, at Agbor, significant 
correlations (> 0.7) were reported at two stations of 

Table 5. Pearson correlation coefficient (r) of heavy metals

Cu Fe Zn Mn Pb Ni Cd Cr

Cu 1

Fe −0.30 1

Zn 0.36 0.61 1

Mn −0.07 0.26 0.26 1

Pb 0.32 0.28 0.33 0.80* 1

Ni 0.25 0.66* 0.94** 0.50 0.53 1

Cd 0.35 0.68* 0.91** 0.25 0.44 0.87** 1

Cr 0.02 0.54 0.75* 0.30 0.14 0.69* 0.78* 1

*P value < 0.05 (statistically significant), and ** P value < 0.001 (high-
ly statistically significant)

Arogodo River between Cr, Cd, Cu, Fe, and Pb, although 
the correlations of Ni and Zn with other heavy metals 
showed greater variability (Issa et al., 2011). This sug-
gests that while some heavy metals show consistent 
patterns of correlation across different studies, others 
may vary significantly, reflecting the influence of local 
environmental factors, sources of contamination, and 
sediment characteristics.

Principal component analysis and cluster analysis
PCA revealed that the first two principal components 
(PC) accounted for 74.07% of the variability, similar to 
the 74% of variability explained by the first two PCs 
in the PCA of HM in the Tajan River (Iran) (Alahabadi 
and Malvandi, 2018). Fig. 5 displayed the PCA variable 
map of the first 2 PCs. The first three PCs accounted for 
96.56% of the variability. PC1, PC2, and PC3 explained 
55.88%, 18.19%, and 16.49% of the variance, respec-
tively. PC1 is highly loaded with Fe, Zn, Ni, Cd, and Cr, 
similar to the high PC1 loading for Fe and Cr found in 
the Alahabadi and Malvandi (2018) study, attributing it 
to anthropogenic contamination. PC2 is loaded with Mn 
and Pb, and PC3 with Cu. This suggests three poten-
tial anthropogenic non-point HM sources in the area, 
possibly unrelated to petroleum activities. PC1 could be 
linked to agricultural and urban runoffs with improper 
sewage and industrial effluent disposal. A combination 
of PC1 and PC2, indicating both geogenic and anthro-
pogenic input, may explain the Mn, Pb, and Cu contents 
in the sediments. This is supported by the positive ma-
trix factorization (PMF) in the study of Mahanadi River 
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sediment (India), which attributed Pb sources to a com-
bination of anthropogenic and geogenic sources (Samal 
et al., 2022). A similar pattern of sediment heavy metal 
sources and distribution was identified in Okpare Creek, 
Niger Delta by Onajite and Ovie (2022). Interestingly, 
the factor analysis results from the study by Jire and 
Imeokparia (2018) identified four factors responsible 
for sediment contamination in the area, including pe-
troleum spills resulting from petroleum production and 
pipeline vandalism due to bunkering activities, metal 
filings from iron/steel industries, emissions from vehi-
cles, and the dumping of wastewater into the river.

The hierarchical cluster dendrogram (Fig. 6) revealed 
two groups of samples and two groups of heavy metal 
sources. Pb, Mn, and Cu were grouped, while Ni, Zn, 
Cd, Cr and Fe were grouped. Uncertainty surrounds the 
exact sources of HMs in these two groupings of heavy 
metals. Several studies with related activities observed 
at the site have suggested potential sources for these 
metals. Cu, Fe, and Zn have been found in lubricating 
oils (Supriyanto, 2018), while Cu, Zn, and Fe have been 
associated with gas flaring (Obiudu et al., 2021). Cd has 
been linked to domestic sewage discharges, municipal 
wastewater, industrial wastes, and harbour fishing ac-
tivities (Perumal et al., 2021). Minor increases in Mn and 
Fe have been observed in areas where non-aqueous 
fluids have been used in oil and gas drilling (Pozebon 
et al., 2009). Enrichments of Cd, Pb, and Cu have been 
found in soils around petroleum tank farms (Emoyan et 
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al., 2020). Port activities have been associated with Cu, 
Ni, and Zn (Delshab et al., 2017). Increased levels of Pb, 
Cd, Zn, Ni, and Cr have been linked to emissions from 
diesel and petrol engine boats, operations at the dock, 
and discharge areas near the oil terminal. These pol-
lutants also originate from refinery waste that travels 
through channels dug from the petroleum tank farm 
to the discharge points (Onojake et al., 2015). Sample 
IDs SED4, SED6, SED10, SED3, SED1, and SED2 were 
grouped, while sample IDs SED7, SED8, SED5, and 
SED9 were also grouped and are related to oil and 
gas-related activities.

Conclusions
This study provided insights into the contamination of 
Warri River sediments, particularly focusing on heavy 
metals. The concentrations of the heavy metals, in-
cluding Cu, Fe, Zn, Mn, Pb, Ni, Cd, and Cr, varied widely 
across different sediment locations, with the highest 
levels typically found in areas associated with crude oil 
exploration and production (SED7, SED8, SED9). The 
aggregate contamination indices (mCd, PLI, and RI) re-
vealed no pollution or ecological risk across the site. 
Single contamination indices (CF, Igeo, ERI) and Sediment 
Quality Guidelines (SQG) revealed low-level contamina-
tion / ecological risk for most heavy metals except Cd, 
which was found to be high in several locations (SED2–
SED10). SQG indicated that Cd levels across the sites fell 
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between TEL and PEL, potentially posing some ecolog-
ical risk. All the indices identified SED8 as a hotspot of 
heavy metal contamination. Correlation and PCA anal-
yses revealed strong interrelationships among heavy 
metals, suggesting common sources or environmental 
pathways. The PCA identified three main components 
that accounted for the majority of variability, pointing 
to multiple anthropogenic sources such as agricultur-
al runoff, industrial effluents, and domestic sewage, 
alongside geogenic inputs. Authorities can immediately 

employ monitoring and regulation of industrial activi-
ties, along with the implementation of sustainable poli-
cies, to prevent further contamination of the Warri River 
system and avert the negative consequences of indus-
trial activities on the aquatic ecosystem.
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