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Water pollution poses a significant ecological threat, contributing to the widespread degradation of aquatic ecosys-
tems. Among the pollutants, heavy metals pose severe risks to both organisms and human health, emphasizing 
the urgent need for effective pollution control technologies. Biosorption presents a promising, cost-effective, and 
environmentally friendly solution to mitigate heavy metal contamination. Biofilms, consisting of microbial commu-
nities, have emerged as potential biosorbents for heavy metals. Since heavy metals can exist as cations and anions 
concurrently in aquatic environments, understanding their behavior in binary systems is essential for biosorption 
strategies. This study focuses on the binary biosorption of Cu(II) and Cr(VI), representing cationic and anionic heavy 
metals. Specific adsorption sites are identified by analyzing adsorption kinetics, isotherms, and IR spectra of bi-
ofilms. The results indicate that biofilms, in a binary scenario, demonstrate nearly identical adsorption capacities 
for Cu(II) and Cr(VI). Moreover, the adsorption process follows the Langmuir adsorption model, emphasizing the 
potential of biofilms as effective biosorbents for the simultaneous removal of cationic and anionic heavy metals. 
This study advocates for a sustainable approach to heavy metal remediation through the utilization of biofilms.
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Introduction
Wastewater discharged by various industries signifi-
cantly contributes to environmental pollution (Ahmad 
et al., 2008). Heavy metals, prevalent within aquat-
ic environments, pose substantial risks to humans, 
plants, and animals (Quintelas et al., 2009; Yanuar 

et al., 2021). These metals migrate and accumulate 
within the aquatic food chain, exacerbating their eco-
logical impact (Febriana et al., 2011; Takahashi et al., 
2012). Therefore, effective removal or immobilization 
of these contaminants is essential to safeguard aquatic 
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ecosystems (Wang and Chen, 2009; Mavakala et al., 
2022).

Among the prevalent heavy metals, copper and chro-
mium play pivotal roles in various industries. Copper 
is widely used in cables, plumbing, corrosion-resistant 
coatings, and automotive components (Bilgic et al., 
2022). Conversely, chromium is found to be extensive-
ly used in metal plating, leather tanning, and electro-
plating processes (Ulfa et al., 2019). Elevated levels 
of Cu(II) and Cr(VI) can result in severe health issues, 
sometimes proving fatal (Jiang et al., 2020; Ju et al., 
2022). In natural aquatic environments, copper pri-
marily exists as Cu(II) cations, while chromium exists 
as Cr2O7²⁻ or Cr(VI) anions at pH above 6.5. The coexis-
tence of cationic and anionic heavy metals like Cu(II) 
and Cr(VI) underscores the urgent need for technology 
capable of concurrently mitigating pollution from both 
ion types.

Biosorption is a promising technology for purify-
ing pollutants, particularly heavy metals (Kurniawan 
et al., 2020). Its potential lies in its ability to provide 
a cost-effective and environmentally friendly solution 
that is easily applicable. The effectiveness of biosorp-
tion hinges significantly on the choice of biosorbent, 
with aquatic microbes, particularly those inhabiting 
biofilms, garnering attention as potential candidates 
(Zhao et al., 2022). While some studies have explored 
the utility of biofilms as biosorbents (Jasu and Ray, 
2021; Mustafa et al., 2021), limited research has delved 
into binary biosorption employing naturally formed bi-
ofilms. Given the complexity of water contamination 
involving multiple heavy metals, the simultaneous bio-
sorption of cationic and anionic heavy metals, such as 
Cr(VI) and Cu(II), within a binary system using biofilms 
is of utmost significance. This study aims to address 
this critical knowledge gap.

This study delves into the intricate dynamics of binary 
biosorption using naturally formed biofilms when chal-
lenged with Cu(II) and Cr(VI). The findings reveal that 
biofilms exhibit remarkable equitability in adsorbing 
Cu(II) and Cr(VI) within this binary biosorption frame-
work. Moreover, this adsorption occurs rapidly and 
closely adheres to the Langmuir adsorption model. 
These outcomes unequivocally underscore the poten-
tial of biofilms as highly promising biosorbents for the 
concurrent removal of cationic and anionic heavy met-
als in binary biosorption scenarios.

Methods

Biofilm sample preparation
The biofilms utilised in this study were sourced from 
natural biofilms thriving on stones within the freshwater 
pool at the University of Brawijaya in Malang City, Indone-
sia. Stones adorned with biofilm matrices were carefully 
transferred into plastic containers and filled with pond wa-
ter. These containers, housing biofilm and the surrounding 
water, were transported to the laboratory while maintain-
ing a temperature below 4°C. The biofilm was harvested 
from the stone surfaces using a sterile toothbrush and 
then suspended in 40 mL of distilled water. Subsequently, 
biofilm samples were processed into pellets via centrifu-
gation at 8000 x g for 3 minutes. These biofilm samples 
were stored at -40°C until required for the experiment.

Kinetics of adsorption
Copper [Cu(II)] and Chromium [Cr(VI)] solutions were pre-
pared by dissolving reagent-grade CuCl₂ and K₂Cr₂O₇ in 
distilled water. Subsequently, 0.5 grams of biofilm pellets 
were introduced into a glass beaker containing 50 mL of 
a solution containing 50 mg/L of CuCl₂ and K₂Cr₂O₇. The 
resulting suspension was thoroughly homogenized us-
ing a magnetic stirrer. At specific time intervals (5, 15, 
30, 60, 120, and 180 minutes), 4 mL of the solution was 
extracted and then centrifuged at 8000 x g for 3 minutes 
to separate the pellet from the supernatant. Concentra-
tion measurements for Cr(VI) and Cu(II) in the superna-
tant were carried out using a UV–VIS Spectrophotometer. 
The adsorption process was assessed by calculating ion 
concentration differences between the supernatant and 
the control (i.e., a solution lacking biofilm). Notably, this 
experiment was independently repeated three times.

Adsorption isotherm
Several solutions of Cu(II) and Cr(VI) with different 
concentrations were prepared by dissolving reagent 
grades of CuCl₂ and K₂Cr₂O₇ simultaneously in distilled 
water. The concentrations were 125, 250, 1000, and 
2000 mg/L. Then, 0.5 grams of biofilm pellet was add-
ed to Erlenmeyer containing 50 mL of Cu(II) and Cr(VI) 
solution with different concentrations (i.e., 125, 250, 
1000, and 2000 mg/L) and mixed well using a mag-
netic stirrer. After 10 minutes, the biofilm suspensions 
were centrifuged (10 000 x g for 3 minutes) to separate 
the biofilm and supernatant. The Cu(II) and Cr(VI) con-
centrations in the supernatant were measured using 
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a UV–VIS Spectrophotometer. The number of ions ad-
sorbed was calculated from the difference between the 
concentrations in the supernatant and the control (solu-
tion without biofilm). The experiment was repeated 
three times, independently.

Adsorption isotherm of Cu(II) and Cr(VI) into the bio-
film matrices was analysed using the Langmuir model 
shown in equation 1.
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Equation 1, presented above, posits the existence of a 
dynamic equilibrium between the ions within the ad-
jacent water of the biofilm matrices and the adsorbed 
ions within the biofilm matrices (N). This equilibrium 
condition ultimately leads to attaining the equilibrium 
concentration (C). The adsorption and desorption rates 
ratio is elucidated by the adsorption equilibrium con-
stant (b), typically measured in L/mg. When the ad-
sorption rate surpasses the desorption rate, the value 
of b increases. A plot of C/N against C yields a linear 
graph characterized by a slope of 1/Nmax and a y-in-
tercept of 1/(Nmax)b. Consequently, this allows for de-
termining the values of Nmax and b.

FTIR analysis
Copper [Cu(II)] and chromium [Cr(VI)] solutions were pre-
pared by dissolving reagent-grade CuCl₂ and K₂Cr₂O₇ in 
distilled water. Subsequently, 0.5 grams of biofilm pellets 
were introduced into a glass beaker containing 50 mL of 
a solution containing 50 mg/L of CuCl₂ and K₂Cr₂O₇. The 
resulting suspension was thoroughly homogenized us-
ing a magnetic stirrer. At specific time intervals (5, 15, 
30, 60, 120, and 180 minutes), 4 mL of the solution was 
extracted and then centrifuged at 8000 x g for 3 minutes 
to separate the pellet from the supernatant. Concentra-
tion measurements for Cr(VI) and Cu(II) in the superna-
tant were carried out using a UV–VIS Spectrophotometer. 
The adsorption process was assessed by calculating ion 
concentration differences between the supernatant and 
the control (i.e., a solution lacking biofilm).

Results and Discussion

Kinetics of adsorption
The kinetics of Cu(II) and Cr(VI) adsorption within binary 
systems by biofilms, spanning contact times from 5 to 

Fig. 1. Time course of Cu(II) adsorption into biofilm. Bars represent 
the standard error

Fig. 2. Time course of Cr(VI) adsorption into the biofilm. Bars rep-
resent the standard error
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180 minutes, are depicted in Figs. 1 and 2, respectively. 
Notably, Cr(VI) adsorption remained consistent from 
the initial 5 minute mark throughout the experiment, 
plateauing at approximately 4.9 mg/g. This trend was 
mirrored in the case of Cu(II) adsorption, where the up-
take reached a stable level of approximately 4.4 mg/g 
and remained consistent over 180 minutes. This rapid 
and sustained adsorption process reflects a distinctive 
feature of the passive accumulation of ions via physi-
cochemical mechanisms.

The physicochemical process governing ion adsorp-
tion into biofilm matrices is a fundamental aspect of 
passive uptake, operating independently of microbial 
metabolic activity (Choi and Kan, 2019; Nandi et al., 
2021). Under this mechanism, adsorption occurs due 
to the attractive electrostatic interactions between ions 
and the charged sites on biofilm polymers (Ulfa et al., 
2019). These charged sites serve as binding sites, facil-
itating the adherence of ions to the biofilm matrix.
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subjected to independent t-tests. The results, present-
ed in Table 1, revealed a P value < 0.001, indicating a 
statistically significant difference between the adsorp-
tion processes of Cu(II) and Cr(VI) into biofilm matrices. 
Although the average difference in adsorption amounts 
between Cu(II) and Cr(VI) is relatively small (4.4 mg/g 
and 4.9 mg/g, respectively), suggesting a similar trend, 
distinctions in their adsorption characteristics by bio-
films persist.

These differences likely arise from variations in the 
electrostatic properties between cationic and anionic 
heavy metals. One notable distinction is the deposi-
tion of these ions within different regions of the biofilm 
matrices. Cationic heavy metals tend to accumulate in 
areas rich in negatively charged sites, whereas anionic 
heavy metals preferentially bind to regions abundant in 
positively charged sites.

Adsorption isotherm
To explore Cu(II) and Cr(VI) biosorption behavior within 
the binary system, we analyzed their adsorption iso-
therms in Figs. 3 and 4. Utilizing insights from the ki-
netic adsorption experiment, we maintained a contact 
time of 10 minutes for this analysis. Interestingly, we 
observed a gradual increase in Cu(II) and Cr(VI) adsorp-
tion with rising concentrations, reaching saturation at 
higher levels. The adsorption data obtained in this study 
exhibit the characteristic L type of adsorption isotherm, 
indicating a specific adsorption isotherm model. This 
behavior likely arises from the variable availability 
of active biofilm sites for Cu(II) and Cr(VI) adsorption 
within the binary system. The higher abundance of ac-
tive sites at lower concentrations facilitates enhanced 
ion accumulation.

The significance of this physicochemical mechanism 
becomes particularly evident when biofilms are ex-
posed to the simultaneous adsorption of various heavy 
metal types, encompassing both cationic and anionic 
variants. The consistent adsorption behavior observed 
for both Cu(II) and Cr(VI) in our study, regardless of 
their distinct charge characteristics, supports the ef-
fectiveness of this process in accommodating a broad 
spectrum of heavy metal ions. This versatility under-
scores the potential utility of biofilms as robust and 
versatile biosorbents for removing complex mixtures 
of heavy metals in aquatic environments.

The attractive electrostatic interactions between ions 
and biofilm polymers play a pivotal role in facilitating 
the binding of heavy metals to the biofilm matrix. This 
electrostatic interaction process is well–established in 
the literature, and its dominance in our study reaffirms 
its crucial role in the adsorption of heavy metals by bio-
films. Overall, the study provides valuable insights into 
the physicochemical mechanisms underpinning the bi-
osorption of heavy metals, particularly in a binary sys-
tem, reinforcing the versatility and potential of biofilms 
as effective biosorbents.

The kinetics of Cu(II) and Cr(VI) adsorption within the 
binary systems exhibit comparable characteristics. 
Both ions undergo swift adsorption, with the amount 
adsorbed remaining relatively stable. Consequently, 
it is plausible to deduce that both ions are assimilat-
ed into the biofilm matrices through passive uptake 
mechanisms. This mechanism is likely underpinned by 
electrostatic interactions and ion exchange processes 
(Kurniawan and Yamamoto, 2022).

To compare the adsorption characteristics of Cu(II) and 
Cr(VI), the kinetics of adsorption data for both ions were 

Table 1. Independent t–test results to compare the kinetics of adsorption of Cu(II) and Cr(VI) into biofilms

Levene’s test 
for equality 
of variances

t-test for equality of means

F ig. t df
Significance

Mean 
difference

Std. 
error dif-
ference

95% confidence inter-
val of the difference

One sided P Two sided P Lower Upper

VAR00005

Equal variances 
assumed 2.990 093 -15.089 34 < 0.001 < 0.001 -0.46051 0.03052 -0.52253 -0.39848

Equal variances 
not assumed -15.089 30.629 < 0.001 < 0.001 -0.46051 0.03052 -0.52278 -0.39823
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A comparison of the adsorption isotherms of Cu(II) and 
Cr(VI) by the biofilm matrices was performed using a 
two–sample independent t-test. Here, μ₁ represents 
the population mean of the equilibrium concentration 
of Cu(II), while μ₂ represents the population mean of 
the equilibrium concentration of Cr(VI). The results of 
the test are shown in Table 2. The obtained P value 
from this test is 0.992, which exceeds 0.05. This indi-
cates no significant difference in the equilibrium con-
centration between Cu(II) and Cr(VI) adsorption by the 
biofilm matrices in the binary system. Both exhibit a 
trend consistent with the L type of adsorption, where 
the adsorption capacity increases with the rise in equi-
librium concentration and eventually stabilizes at high-
er concentrations.

In order to deepen our comprehension of the bio-
sorption traits of Cu(II) and Cr(VI), we employed the 

Fig. 3. Adsorption isotherm of Cu(II) into biofilm. Bars represent the 
standard error

Fig. 4. Adsorption isotherm of Cr(VI) into biofilm. Bars represent 
the standard error

Langmuir isotherm model (refer to Figs. 5 and 6). 
Within this model, we graphed the ratio of the amount 
of Cr(VI) and Cu(II) adsorbed into the biofilm (N; mg/g) 
against the equilibrium concentration (C; mg/L). This 
approach facilitated estimating the maximum biosorp-
tion capacity (Nmax; mg/g) and the adsorption equilib-
rium constant (b; L/mg).

Table 2. Results of the two–sample independent t-test comparing 
the adsorption isotherms of Cu(II) and Cr(VI) into biofilms

Null hypothesis H₀: μ₁ - μ₂ = 0

Alternative hypothesis H₁: μ₁ - μ₂ ≠ 0

T-Value DF P Value

-0.01 10 0.992

Fig. 5. Plotting Cu(II) adsorption results in the Langmuir isotherm 
model. Bars represent the standard error

Fig. 6. Plotting Cr( VI) adsorption results in the Langmuir isotherm 
model. Bars represent the standard error
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The adsorption of Cu(II) and Cr(VI) into the biofilms 
conforms well to the Langmuir isotherm model (R² = 
0.98 and 0.97 for Cu(II) and Cr(VI), respectively), indicat-
ing monolayer adsorption predominance. This process 
primarily involves the interaction between these ions 
and charged sites within the biofilm, facilitated by at-
tractive electrostatic interactions with biofilm polymers 
(Kurniawan et al., 2012; Gadd, 2009; Chubar et al., 2008; 
Buhani et al., 2006).

The maximum uptake of Cu(II) and Cr(VI) by the biofilm 
(Nmax) was estimated at 102.04 mg/g and 100 mg/g, 
respectively, implying a slightly greater affinity for an-
ionic variants. This capability arises from the presence 
of positively and negatively charged sites in biofilm 
matrices (Kurniawan and Fukuda, 2022), facilitating 
simultaneous adsorption of Cu(II) and Cr(VI). The mar-
ginally higher adsorption of anionic heavy metals may 
stem from more adsorption sites or spaces between 
biofilm polymers, enhancing accessibility.

The equilibrium constants (b) for Cu(II) and Cr(VI) were 
determined to be 0.008 L/mg and 0.007 L/mg, respec-
tively, suggesting nearly equal binding strength within 
the biofilm matrix. Cu(II) exhibits slightly stronger bind-
ing, likely due to biofilm matrices’ net negative charge 
around pH 7, rendering cationic bonds marginally more 
robust (Kurniawan and Fukuda, 2022). This study un-
derscores the biofilm matrix’s capability to adsorb cat-
ionic and anionic heavy metals simultaneously within 
a binary biosorption system, emphasizing comparable 
adsorption capacity and strength for both ion types.

Furthermore, the adsorption efficiency of Cu(II) and 
Cr(VI) by the biofilm matrices was evaluated based on 
initial concentration data in the adsorption isotherm 
experiment, revealing a notable pattern. Efficiency 
gradually diminishes with increasing Cu(II) and Cr(VI) 
concentrations. For instance, Cr(VI) efficiency peaks at 
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dropping to 50.3% at 2000 mg/L. Similar trends are 
observed with Cu(II), with efficiency peaking at 87.6% 
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These findings highlight the intricate relationship be-
tween concentration and biosorption efficiency. Elevat-
ed concentrations enhance ion adsorption by increas-
ing active site availability, but eventually, a saturation 
point is reached, leading to diminished efficiency. This 
decline may arise from limited active sites, competition 

for adsorption sites, and potential ion interactions at 
higher concentrations. Understanding these dynamics 
is vital for optimizing biosorption processes and as-
sessing their practical applicability in mitigating heavy 
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The observed reduction in adsorption efficiency at 
higher concentrations likely results from decreased 
available active sites within the biofilm for Cu(II) and 
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ficacy in adsorbing heavy metals, even within a binary 
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These findings highlight the intricate relationship between concentration and biosorption efficiency. Elevated 6 

concentrations enhance ion adsorption by increasing active site availability, but eventually, a saturation point is 7 
reached, leading to diminished efficiency. This decline may arise from limited active sites, competition for 8 
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efficiency, while μ₂ represents the population mean of 
Cr(VI) adsorption efficiency. The analysis resulted in a 
t–value of 0.16 and a P value of 0.837. Given that the 
P value exceeds 0.05, it suggests no significant differ-
ence in the adsorption efficiency between Cu(II) and 
Cr(VI) by the biofilm. This finding indicates that the bi-
ofilm matrices exhibit nearly identical efficiency levels 
in the binary system adsorbing Cu(II) and Cr(VI). Conse-
quently, biofilm matrices demonstrate the capability to 
adsorb cationic and anionic heavy metals concurrently 
and with comparable efficiency. This adsorption char-
acteristic underscores the potential effectiveness of bi-
ofilm matrices as biosorbents for treating wastewater 
containing cationic and anionic heavy metals.

Furthermore, we conducted a detailed analysis of Cu(II) 
and Cr(VI) adsorption efficiency by biofilm matrices in 
binary systems using cluster analysis with the Euclide-
an distance method and complete linkage (Fig. 9). The 

Table 3. Results of the two–sample independent t–test comparing 
the adsorption efficiency of Cu(II) and Cr(VI) into biofilms

Null hypothesis H₀: μ₁ - μ₂ = 0

Alternative hypothesis H₁: μ₁ - μ₂ ≠ 0

T value DF P value

-0.01 10 0.873

outcomes revealed a distinct pattern in the adsorption 
efficiency of Cu(II) and Cr(VI), categorized into two clus-
ters. The first cluster encompassed adsorption at ini-
tial concentrations of 10, 15, 125, 250, and 1000 mg/L, 
while the second cluster represented adsorption at an 
initial concentration of 2000 mg/L.

These results highlight the uniformity in adsorption 
efficiency for Cu(II) and Cr(VI) at concentrations of 10, 
15, 125, 250, and 1000 mg/L. However, a significant 
deviation in efficiency was observed at a concentration 
of 2000 mg/L. This suggests that while the adsorption 
efficiency by biofilm matrices remains consistently 
high at low to moderate concentrations, it diminishes 
at higher concentrations, such as 2000 mg/L.

These insights are invaluable for developing environ-
mental purification technologies based on the adsorp-
tion process of cationic and anionic heavy metals by 
biofilm matrices. By understanding the concentra-
tion-dependent nature of adsorption efficiency, we can 
tailor purification methods to achieve optimal perfor-
mance and desired efficiency levels.

FTIR spectra
FTIR analysis was utilized to identify the active function-
al groups involved in the biosorption process of Cr(VI) 
and Cu(II) within binary systems by biofilms (Fig. 10). 

Fig. 9. Dendrogram from cluster analysis with Euclidean distance method and complete linkage for Cu(II) and Cr(VI) adsorption by biofilm matrices
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Fig. 10. FTIR spectra analysis of biofilms before and after adsorption of Cu(II) and Cr(VI) in a binary biosorption system
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The analysis of biofilms using FTIR revealed distinct al-
terations in the biofilm composition before and after the 
adsorption of Cu(II) and Cr(VI). For instance, the wave 
peak observed at 3402.562 cm⁻¹ in the intact biofilm 
shifted to 3430.730 cm⁻¹ post-adsorption, indicating 
changes in stretching vibrations associated with O–H 
or N–H groups. The wave peak at 2922.675 cm⁻¹ also 
shifted to 2926.279 cm⁻¹, indicating activity in the ali-
phatic C-H functional group. The presence of C=O-dike-
tone functional groups was indicated by a change from 
a peak at 1541.072 cm⁻¹ to 1540.986 cm⁻¹. Furthermore, 
the transition from 1456.309 cm⁻¹ to 1384.661 cm⁻¹ in 
the wave peak suggested the presence of aromatic 
nitro functional groups. In comparison, the shift from 
1268.310 cm⁻¹ to 1113.342 cm⁻¹ indicated the presence 
of the alkyl halide functional group, possibly caused by 
C–X stretching. The transition from 1057.025 cm⁻¹ to 
949.19 cm⁻¹ signified the involvement of OH, CH, C–OH, 
and CH₂ on the glycosyl unit in the adsorption process.

The stretching of O–H alcohol typically occurs within 
the 3200–3600 cm⁻¹ region, while alpha CH vibrations 
are observed within the 3000–2700 cm⁻¹ range, char-
acteristic of alkane and alkyl groups. The stretching 
form of C=C alkenes becomes evident in the 1645–
1670 cm⁻¹ range, with CO displaying activity within the 
1050–1200 cm⁻¹ region (Anam et al., 2007). The altera-
tions observed in the IR-spectra profiles of the biofilm 
matrices before and after the adsorption of Cu(II) and  
Cr(VI) suggest the involvement of functional groups 

such as amino and carboxyl groups in the biofilm poly-
mers’ binding of heavy metals. This study indicates that 
the adsorption of cationic and anionic heavy metals is 
facilitated by the presence of ionized functional groups 
within the biofilm, offering positively and negatively 
charged sites for ion binding.

These findings offer critical insights into the mecha-
nisms underpinning the adsorption of Cu(II) and Cr(VI) 
by biofilms, confirming the role of specific functional 
groups in facilitating this process. Biofilms’ ability to 
accommodate diverse heavy metals, encompassing 
cationic and anionic varieties, underscores their poten-
tial as versatile and practical biosorbents for removing 
heavy metals from aqueous environments.

Conclusions
In this study, we investigated the dynamics of binary 
biosorption, explicitly examining the interactions be-
tween Cu(II) and Cr(VI) within biofilm matrices – repre-
senting cationic and anionic heavy metals, respectively. 
Our results reveal the remarkable capacity of biofilm 
matrices to adsorb these ions concurrently within a 
binary system. This intricate process is governed by 
complex physicochemical mechanisms involving inter-
actions between ions and the charged sites distributed 
across the biofilm matrices. Cu(II) and Cr(VI) demon-
strated similar adsorption behavior within the binary 
systems. The nearly equivalent adsorption of these 
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ions, with a slight preference for Cr(VI), highlights the 
adaptable nature of biofilms in accommodating heavy 
metals with diverse charge properties. Moreover, the 
comparable binding strengths observed for cationic 
and anionic ions within the biofilm matrix, albeit with 
a slight preference for cationic metals, suggest the in-
volvement of ionized functional groups within the bio-
film structure. These groups serve as charged binding 
sites, facilitating the adsorption of both types of heavy 
metals. Our findings carry significant implications for 
environmental remediation endeavors, emphasizing 
the considerable potential of biofilm matrices as effec-
tive biosorbents for addressing the complex challenges 
posed by heavy metal pollution in aquatic ecosystems. 

The ability of biofilms to adsorb heavy metals with var-
ying charge characteristics, coupled with their balanced 
binding strengths, positions them as invaluable tools in 
mitigating the impacts of heavy metal contamination.
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