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Tangier, one of Morocco’s largest coastal cities strategically located between two maritime boundaries, has un-
dergone significant transformations, particularly through the revitalization of its port area, leading to the estab-
lishment of a coastal path and waterfront. Given this context, conducting large-scale, precise spatiotemporal 
analysis and land-use classification is crucial for fostering Tangier’s sustainable development. In this paper, a 
random forest algorithm was utilized to map land use changes in Tangier city using Landsat images, which has 
led to the generation of land use maps of the city from 2000 to 2023. The results show high accuracy in identifying 
land-use classes with an overall accuracy of 96% and a kappa coefficient exceeding 0.96. Moreover, the spatio-
temporal analysis revealed notable changes:  built-up land and forested areas increased by 124.55% and 41.11%, 
respectively, while maritime water areas decreased by 5%, and vegetation areas experienced a 30% decrease, on 
the other hand. The techniques presented in this study contribute to enhancing the precision of land-use classifi-
cation within the complex environment of Tangier. They provide valuable technical support for conducting natural 
resource surveys and promoting sustainable regional development in the city.
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Introduction
Understanding the long-term dynamics of land use 
and land cover (LULC) is a fundamental strategy for 
quantifying gradual changes in the environment, man-
aging natural resources, and planning for sustainable 

development. This comprehension plays a crucial role 
in various domains, including water management, 
agriculture, combating desertification and mitigating 
climate change (Mushtaq et al., 2022). The primary 
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driver of environmental changes is the alterations of 
land use and land cover resulting from human activi-
ties and their interactions with the environment. These 
alterations are influenced by various factors, including 
population growth, environmental exploitation, urban-
ization, deforestation, tourism development activities, 
improper land use, and anthropogenic actions (Lambin 
et al., 2001). These factors shape and transform the 
current landscape of land use and land cover (Jaiswal 
et al., 1999; Yuan et al., 2005; Sharma and Joshi, 2013; 
Rawat and Kumar, 2015). Therefore, accurate and re-
liable information regarding land cover changes and 
area expansion is fundamental for the development of 
effective land-use policies and environment protection 
by decision-makers, government agencies, and inves-
tors (Camalan et al., 2022; Becker et al., 2021; Mousa 
et al., 2020). Satellite data dedicated to land resourc-
es prove to be of paramount importance for detecting 
land use/cover changes (Yuan et al., 2005). The litera-
ture highlights Landsat satellite optical imagery with 
its different sensors (i.e., MSS, TM, and ETM+) as the 
most utilized image set (Amani et al., 2020), represent-
ing valuable and continuous records of the Earth’s sur-
face over the past three decades. These images, with 
their adequate spectral properties, provide better in-
formation on LULC changes compared with point data 
collected by on-site instruments during in-situ surveys 
(Muttitanon and Tripathi, 2005). 

The integration of remote sensing technologies and 
geographic information systems has demonstrated re-
markable efficiency in mapping and evaluating urban 
land use changes (Phan et al., 2020). This provides a de-
tailed and cost-effective approach for regional land al-
location across agricultural, urban, and industrial areas 
(Reis et al., 2003; Setti et al., 2020). These technologies 
enable continuous observation of the Earth’s surface, 
creating vast databases that can be used to generate 
land use maps and detect dynamic changes and trans-
formations with improved accuracy and efficiency (Sin-
gh, 1989; Lu et al., 2005; Sbai et al., 2016; Kolli et al., 
2020). Precise LULC maps play a crucial role in clas-
sifying land into major categories, providing an over-
view of resources, their utilization, and their impact on 
socio-economic development (Betts et al., 2003; Griffith 
et al., 2003). Capital methodological approaches exist 
for exploiting satellite imagery to obtain accurate maps. 
Among these, multi-temporal land use analysis is one 
of the most widely used methods, due to its ability to 

consider spatial distribution. Today, modern remote 
sensing technologies benefit from the emergence and 
development of cloud storage and cloud computing 
platforms, such as Google Earth Engine (GEE), which 
offers powerful support tools to monitor and analyze 
environmental characteristics at a large scale. GEE in-
cludes numerous satellite datasets with general classi-
fication algorithms such as random forest (RF), widely 
employed for land cover mapping (Gislason et al., 2006; 
Rodriguez-Galiano et al., 2012a; Gorelick et al., 2017). 
RF improves LULC mapping accuracy compared with 
other prominent comparable methods (Zeferino et al., 
2020). This algorithm offers high classification accura-
cy, is capable of handling high-latitude data, and elimi-
nates the requirement for feature selection (Belgiu and 
Drăguţ, 2016). The present study aims to utilize satellite 
imagery for a diachronic study of land use in Tangier, 
establishing its evolution and detecting changes over 
23 years using the RF algorithm for classification (Mas, 
2000; Lu et al., 2005). Land use maps are then used to 
extract artificial areas along the coastal fringe to study 
the evolution of urban areas in these zones, and to eval-
uate the impact of land use development on the coastal 
area. In this article, we examine the random forest al-
gorithm on Google Engine. The structure of the docu-
ment is as follows. Section 2 describes the Materials 
and Methods applied to the study area and presents the 
datasets and accuracy evaluation. Section 3 provides 
the Results and Discussion, including various LULC 
maps of Tangier. We evaluate the performance of the 
random forest algorithm using confusion matrices and 
calculate the kappa index, followed by an examination 
of the spatiotemporal changes. Section 4 presents a 
discussion of the results and concludes the study.

Materials and Methods

Study area
The Tangier region, an integral part of the western sec-
tor of the Moroccan Mediterranean, is composed of a 
series of low plains, the most significant of which is the 
Fahs plain, frequently traversed by several streams. 
This area is bordered by prominent highlands such as 
the Malabata and Spartel capes, the Jbel Lkbir and Jbel 
Zhirou mountains, and is dominated to the east by the 
Internal Rif Limestone Chain (Ait Brahim et al., 2018; 
Mamouni et al., 2019). Geographically, Tangier covers 
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an area of 1195 km², with longitude ranging from 
5°33’W to 6°05’W, and latitude from 35°19’N to 35°51’N 
(Fig. 1). Positioned on the Strait of Gibraltar, Tangier is 
the only Moroccan city that has two sea fronts.  it is 
bounded to the north by the Strait of Gibraltar, to the 
west by the Atlantic Ocean, to the south by the city of 
Asilah, and to the east by the Paleozoic formations of 
the Internal Rif near Tetouan. This region belongs to 
the external domain of the Rif chain, specifically its 
northwestern part, and is characterized by the stacking 
of four flysch nappes resting on the Tangier unit: Mel-
loussa, Béni Ider, Tisirène, and Numidian. The Tangier 
region is marked by a morphostructural context with 
significant structural control, tectonic and neotectonic 
activity affecting the entire region, giving rise to intense 
fracturing (Mamouni et al., 2019). Moreover, at the end 
of the last century, the Rif Mountains of Morocco have 
experienced significant changes at the level of agri-
cultural activity, especially concerning the increase in 

cannabis cultivation characterized by high water re-
quirements (Hmamou and Bounakaya, 2020).

Tangier features a Mediterranean climate, influenced 
by the nearby ocean, characterized as sub-humid with 
an average annual precipitation of 700 mm. Rainfall is 
predominant during the winter season, with a dry peri-
od extending from May to October. The average annual 
temperature stands at 17.5°C, with a mean maximum 
of 28.3°C and a mean minimum of 9°C (Imane et al., 
2019). The city is divided into four urban districts and 
six rural communes. However, in our study area, we 
also include the urban district of Gzenaya. This addition 
aligns with the strategic goals outlined in the develop-
ment plan for the Northern region, which prioritizes 
establishing significant inland urban centers to allevi-
ate coastal congestion. Given its geographic location, 
Gzenaya with its industrial zone contributes signifi-
cantly to forming a robust industrial center around the 
airport, positioned at the southern entrance to Tangier.

Fig. 1. Localization of the study area
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Datasets
This study utilized Landsat surface reflectance to ana-
lyze LULC, from Landsat 5 (TM), Landsat 7 (ETM+), and 
Landsat 8 (OLI) sensors, with data from the years 2000, 
2008, 2015, and 2023 (Table 1). The year 2000 was se-
lected to understand changes since the beginning of 
the century, following significant land acquisitions by 
companies and foreign individuals (Le Tellier, 2004). 
The year 2008 marks the midpoint of this period, re-
flecting the clear impact of climate change on tem-
perature and precipitation trends in Tangier (Driouech, 
2010). In 2015, the major reconstruction works of the 
port were nearly completed, signifying significant in-
frastructural changes (SAPT, 2015). Finally, 2023 was 
chosen to maintain a consistent interval due to the 
availability of high-quality Landsat images for accurate 
analysis. These data have been atmospherically cor-
rected, and a cloud mask was used for cloud shadow 
and cloud-cover correction. Each data is selected with 
a cloud cover criterion of < 10% for each year. A series 
of key dates were selected to conduct this historical 
study. All selected satellite data were calculated for the 
median image of each study year, which was clipped to 
the study area boundary. The city’s spatial growth be-
gan in the early 21st century through land acquisitions 
by foreign companies and individuals. The first selected 
date was 2000 to understand changes that occurred in 
the city since the beginning of the century.

Methodology
This study develops a method of the RF algorithm to 
extract land use and cover change in the study area. 
The classification and accuracy validation methods 
were implemented in a single Google Earth Engine 
(GEE) script, and the surface reflectance of Land-
sat data covering the study area was selected, and 
cloud cover was effectively masked. The classifica-
tion involves a pixel-based technique, using the same 
training data and the random forest (RF) algorithm to 

Table 1. Landsat data used in this study

Image 1 Image 2 Image 3 Image 4

Satellite Landsat5/7 Landsat5/7 Landsat7/8 Landsat7/8

Acquisition period
01/01/2000–
30/05/2000

01/01/2008–
30/05/2008

01/01/2015–
30/05/2015

01/01/2023–
30/05/2023

Sensor TM/ETM+ TM/ETM+ ETM+/OLI/TIRS ETM+/OLI/TIRS

Mode Multispectral Multispectral Multispectral Multispectral

Table 2. Classification category

Type Description

Maritime water Seas, Oceans, Water

Forest Trees, Dense Vegetation

Artificial territories Urban, Commercial, Infrastructure

Continental waters Lakes, Dams, Waterways

Vegetation Crops, Urban Parks

Sand and dune Beach, Sand, Valleys

Bare soils Exposed, Unvegetated, Ground

obtain results. LULC extraction based on the RF meth-
od according to the actual situation of the land use in 
the study area involved seven land use categories (Ta-
ble 2): Marine waters, Forest, Artificial territories, Veg-
etation, Continental water, Sand and dune, and Bare 
soil. A confusion matrix was generated by applying 
the random forest classifier to both the training and 
validation data. Additionally, visual interpretation was 
used to differentiate between land and water bodies. 
Following this, the change characteristics of each land 
use type were analyzed, with a focus on spatial pat-
terns and temporal trends, to clarify the conversions 
between different land use types (Gislason et al., 2006; 
Tatsumi et al., 2015). Land use mapping is generally 
relying on multispectral classification methods, but 
other methods involve the application of remote sens-
ing (Xu, 2008). To better distinguish objects and reduce 
class confusion, we chose to calculate new bands from 
the original bands of pre-processed images. These 
new bands correspond to the main land use classes, 
namely: vegetation through the calculation of the NDVI 
(Huang et al., 2021; Jiang, 2007), water via the MNDWI 
(2) (Xu, 2008) (Fig. 3). The ultimate goal of classifica-
tion is to establish a correspondence between spectral 
classes and information classes (Fig. 2).
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Classifier construction based on the RF algorithm
The random forest (RF), a machine learning classifier 
derived from decision trees, has emerged as a favored 
and highly promising choice among learners for its 
consistent and resilient classification accuracy. The RF 
classifier in Google Earth Engine had a strong perfor-
mance with overall classification accuracy ≥ 0.96 and a 
kappa coefficient ≥ 0.93 using Landsat imagery (Kadri 
et al., 2023; Srivastava et al., 2019). Its efficacy in man-
aging vast, high-dimensional datasets has further ce-
mented its popularity, making it a widely utilized tool in 
the classification of multi-temporal and multi-sensor 
images (Amini et al., 2022; Dhu et al., 2019; Bourgoin 
et al., 2020). RF was selected for this study because it 
produced almost accurate quality results for land use 
classification even when no hyperparameters were 
present. The random forest algorithm implemented 
within the GEE platform is a nonparametric regression 
method. It consists of a set of regression trees con-
structed from training data, usually a set of samples 
taken randomly from the original training set replace-
ment. A regression tree is built for each bootstrap set, 
which together creates the RF. It is a series of rules 
used to split a feature space into partitions with similar 
response variable values (Chen et al., 2021). GEE is a 
cloud-based platform that supports the display, calcu-
lation, and analysis of global satellite imagery. Building 
a random forest classifier involves two main elements: 
random data and feature selection. The number of de-
cision trees was set to 100, and other parameters were 
set to the default values. Regarding the sample points, 
70% of them were used for classifier training, and the 
remaining 30% were used as out-of-bag samples for 

Fig. 2. Flowchart of this study

accuracy verification. Compared with other regression 
methods, RF has several advantages, thereby becom-
ing an attractive regression tool. RF does not overfit 
when the number of regression trees increases and 
does not require variable selection.

Accuracy evaluation
Accuracy assessment represents an essential proce-
dure within the realm of remote sensing data extrac-
tion and target recognition, as it quantifies the simi-
larity between the produced and reference maps. This 
assessment serves a dual purpose: firstly, to appraise 
the precision of the outcomes; and secondly, to estab-
lish a performance benchmark while optimizing asso-
ciated parameters. In this study, the internal confusion 
matrix algorithm of GEE was employed to validate and 
assess the accuracy of image classification (Phan et 
al., 2020). The overarching accuracy, denoted as the 
overall accuracy (OA), quantifies the correctly classified 
pixels situated along the diagonal of the confusion ma-
trix, serving as a direct indicator of accurate classifica-
tion proportion. Furthermore, the kappa coefficient is 
employed to ascertain whether the model’s predictive 
outcomes align with the actual classification results 
(Liu et al., 2007; Foody, 2002).

Results and Discussion
Assessing the performance of LULC for Tangier
The analysis of images for the years 2000, 2008, 2015, 
and 2023 enabled the establishment of land use maps 
for the Tangier region (Fig. 4; Fig. 5; Fig. 6; Fig. 7). Before 
embarking on the analysis and interpretation of these 
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maps, it is prudent to evaluate the classification results. 
This validation was carried out through visual compar-
ison of the classification results with Google Earth im-
ages and ground truth data (Cheng et al., 2017; Khatami 
et al., 2017). The accuracy of the results is assessed 
based on the confusion matrix (Table 4, Table 5, Table 6, 
Table 7, respectively) presenting the matrices obtained 
for the selected images. The overall accuracy percent-
age and the kappa coefficient, as defined in Equation (2) 

for the four classifications are 96.6% and 0.92, respec-
tively (Table 3). Consequently, these classifications are 
considered reliable and suitable for the area’s interest.

Table 3. Classification accuracy

Year 2000 2008 2015 2023 Average

Kappa 0.93 0.83 0.97 0.96 0.92

OA 94.64% 97.32% 97.77% 96.78% 96.62%

Fig. 3. MNDWI 2000, 2008, 2015, 2023
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Table 4. Confusion matrix for the image classification of 2000 7 
Classification 
references 

Maritime 
waters 

Forest Artificial 
territories 

Continental 
waters 

Vegetation Sand 
dune 

Bare 
soils 

Total Error 
commission 

User 
accuracy 
% 

Maritime 
water 

40 1 0 0 0 0 1 42 0.04 95.23 

Forest 0 60 0 1 0 0 1 62 0.03 96.77 
Artificial 
territories 

1 1 23 0 1 0 0 26 0.11 88.46 

Continental 
waters 

0 0 1 34 0 0 1 36 0.05 94.44 

(2)

where po is the observed agreement among raters 
or the proportion of instances where the classifica-
tion matches the ground truth; and pe is the expected 
agreement by chance, calculated based on the distribu-
tion of each category.
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Fig. 4. Land use and land cover in 2000

Fig. 5. Land use and land cover in 2008

Fig. 6. Land use and land cover in 2015

Fig. 7. Land use and land cover in 2023
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Classification
references

Maritime 
waters

Forest
Artificial 

territories
Continental

waters
Vegetation

Sand 
dune

Bare 
soils

Total
Error 

commission
User 

accuracy %

Maritime water 40 1 0 0 0 0 1 42 0.04 95.23

Forest 0 60 0 1 0 0 1 62 0.03 96.77

Artificial territories 1 1 23 0 1 0 0 26 0.11 88.46

Continental waters 0 0 1 34 0 0 1 36 0.05 94.44

Vegetation 0 0 1 0 32 1 0 34 0.05 94.11

Sand and dune 0 0 0 1 0 46 1 48 0.04 95.83

Bare soils 1 0 0 0 1 0 30 32 0.06 93.75

Total 42 62 25 36 34 47 34 280

Error omission 0.04 0.03 0.08 0.05 0.03 0.02 0.11

Producer accuracy % 95.2 96.77 92 94.44 94.11 97.87 88.23

Table 4. Confusion matrix for the image classification of 2000

Table 5. Confusion matrix for the image classification of 2008

Classification
references

Maritime 
waters

Forest
Artificial 

territories
Continental

waters
Vegetation

Sand
dune

Bare 
soils

Total
Error 

commission
User 

accuracy %

Maritime water 10 1 0 0 0 0 0 11 0.09 90.90

Forest 0 40 0 0 0 0 1 41 0.02 97.56

Artificial territories 1 0 36 0 0 0 0 37 0.02 97.29

Continental waters 0 0 0 29 1 0 0 30 0.03 96.66

Vegetation 0 0 0 0 26 0 0 26 0 100

Sand and dune 0 0 0 0 0 37 0 37 0 100

Bare soils 0 0 1 0 0 1 40 42 0.04 95.23

Total 11 41 37 29 27 38 41 224

Error Omission 0.09 0.02 0.02 0 0.03 0.02 0.02

Producer accuracy % 90.90 97.56 97.29 100 96.29 97.36 97.56

Table 6. Confusion matrix for the image classification of 2015

Classification
references

Maritime 
waters

Forest
Artificial 

territories
Continental

waters
Vegetation

Sand
dune

Bare 
soils

Total
Error 

commission
User 

accuracy %

Maritime water 10 0 1 0 0 0 0 11 0.09 90.90

Forest 1 43 0 1 0 0 0 45 0.04 95.5

Artifice territories 0 0 60 0 0 0 0 60 0 100

Continental waters 0 0 0 39 1 0 0 40 0.02 97.5

Vegetation 0 0 0 0 25 0 1 26 0.03 96.1

Sand and dune 0 0 0 0 0 55 1 56 0.01 83.3

Bare soils 0 0 0 0 0 0 32 32 0 95.23

Total 11 43 61 40 26 55 34 270

Error Omission 0.09 0 0.01 0.02 0.03 0 0.02

Producer accuracy % 90.90 100 98.3 97.5 96.1 100 94.1
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Examining the spatiotemporal changes in LULC 
in Tangier
In this study, the change characteristics of Maritime wa-
ters, Forests, Artificial territories, Continental waters, 
Vegetation, Sand and dune, and Bare soils were analyzed 
in terms of area change and area change rate (Table 8). 
The analysis of land occupation changes between 2000 
and 2023 reveals notable trends. The area of marine 
water decreased from 52.91 km2 to 50.15 km2, showing 
a 5% reduction. Conversely, the forested area expanded 
from 109.33 km2 in 2000 to 154.28 km2 in 2023, mark-
ing a substantial 41.11% increase. Significant growth 
was also observed in artificial land, which increased 
from 69.23 km2 to 155.46 km2, indicating a significant 
124.55% increase. Concerning continental water area, 
it has expanded from 23.21 km2 to 25.36 km2, repre-
senting a 9.26% increase. However, there was a nota-
ble decrease in vegetation area, which dropped from 
260.44 km2 to 180.70 km2, reflecting a 30.61% decrease. 
Sand and dune area also decreased from 60.02 km2 to 
50.27 km2, marking a 16.24% reduction. Finally, the bare 
land area decreased from 160.74 km2 to 119.24 km2, in-
dicating a 24.81% reduction.

These changes highlight the dynamic shifts in the land-
scape over this period. The increase in forested land in 
the Tangier-Tetuan region can be attributed to the imple-
mentation of an extensive afforestation program by the 
Regional Directorate of Water and Forests and the Fight 
Against Desertification in the Rif during the 2014–2015 
campaign. This program had a significant impact on the 
region’s forested areas. Specifically, a total area of 2444 

Table 7. Confusion matrix for the image of 2023

Classification 
references

Maritime 
waters

Forest
Artificial 

territories
Continental 

waters
Vegetation

Sand 
dune

Bare 
soils

Total
Error 

commission
User accuracy 

%

Maritime water 18 1 0 0 0 0 0 19 0.05 90.90

Forest 0 46 0 1 0 0 0 47 0.02 95.5

Artifice territories 0 0 95 0 0 0 1 96 0.01 100

Continental waters 1 1 0 31 0 0 0 33 0.06 97.5

Vegetation 0 0 0 0 40 1 1 42 0.04 96.1

Sand and dune 0 0 0 0 1 47 0 48 0.02 83.3

Bare soils 0 0 0 1 1 0 24 26 0.07 95.23

Total 19 48 95 33 42 48 26 311

Error Omission 0.05 0.04 0 0.06 0.04 0.02 0.07

Producer accuracy % 94.73 95.83 100 93.93 95.23 97.91 92.30

hectares was dedicated to tree planting to restore and 
preserve the local forests. Another reforestation project 
was initiated by the same department to regenerate the 
forest lost in a devastating fire that had swept through 
a part of the Cap Spartel forest in 2017. This initiative 
involves planting 267 000 trees over an area of approxi-
mately 265 hectares, to be achieved by 2023.

The increase in the urbanized area of nearly 86 km2 over 
the past 23 years in Tanger can be attributed to several 
key factors. According to the 2014 population census, 
the population of Tangier has experienced an average 
annual growth of 3.08% since 2004. Moreover, it is es-
sential to note that Tangier’s prefectural urbanization 
rate was 94.3% in 2014, which is above the regional 
average of 59.9% and the national average of 60.4%. 
This high level of urbanization demonstrates that Tang-
ier is becoming a major hub for urban development 
in Morocco. The prefecture of Tangier has witnessed 
the emergence of several significant urban centers, 
including the new city of Chrafate, aiming to produce 
30 000 housing units, and the Ibn Battuta urban clus-
ter, with plans for 16 000 housing units. The surface 
area of continental waters was estimated at 23 km2 in 
2000, a consequence of Morocco’s significant warming 
trends between 1972 and 2004. This surface area has 
further increased compared with 2000, and this change 
depends not only on precipitation but also on the cap-
turing of floodwaters by dams, particularly during the 
severe flooding incident witnessed by the city in 2008. 
The expansion of urbanized areas has led to a decrease 
in vegetation, sand, and bare soil. Tangier city is often 
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subject to meteorological disturbances, such as strong 
winds, severe thunderstorms, and heavy rainfall from 
mid-October to early May. However, the climatic effect 
on agricultural land can be neglected in this study, due 
to the absence of images captured during the rainy pe-
riod (January to May).

The recorded variation rate in seawater area (5%) is al-
most negligible and can return to sea level at the time 
of image capture, likely influenced by tidal fluctuations 
(Bourouhou and Salmoun, 2021).

Urban expansion of Tangier coastal zone
To estimate the coastal development degree, a distance 
of 10 kilometers was used, extending from the coast-
line towards the inland area (Wahbi et al., 2019), cover-
ing an approximate area of 95 km2. Given that most of 
Tangier’s coastlines are sandy, and urbanization typi-
cally occurs in these coastal areas, Table 9 shows the 
percentage variations of these areas, while Figs. 12–15 
illustrate the evolution of urban development along the 
coastline. The total land gained during the observation 
period reached 30.03 km2, indicating that approximate-
ly 1 305 652 m2 of the coastline was transformed into 
urban areas annually throughout the study period. Ta-
ble 10 depicts the periods of urban expansion at the 
expense of the sea between 2000 and 2023.

Data analysis (Figs. 8–10) highlights that the first pe- 
riod (2000–2008) witnessed the lowest urban growth 
at the expense of the coastline, with only approximate-
ly 7.56 km2 of land reclaimed, accounting for 25.2% of 
the total area. The period between 2008 and 2015 did 
not show a remarkable increase, with an estimated 
9.57 km2 of urbanized land. However, beyond 2015, it 
marked the most significant spatial expansion into the 
sea, where approximately 43% of the reclaimed land 
was developed between 2015 and 2023 (Fig. 11). During 
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Land 

occupation 
Area km2 Variation % 

2000/2023 2000 2008 2015 2023 
Marine water 52.91 47.24 47.62 50.15 −5 

Forest 109.33 100.14 133.30 154.28 41.11 
Artificial land 69.23 82.55 148.37 155.46 124.55 
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water 
23.21 26.38 25.21 25.36 9.26 

Vegetation 260.44 230.24 224.72 180.70 −30.61 
Sand and dune 60.02 47.88 57.79 50.27 −16.24 

Bare land 160.74 201.41 97.66 119.24 −24.81 
 8 

Urban expansion of Tangier coastal zone 9 
 10 
To estimate the coastal development degree, a distance of 10 kilometers was used, extending from the 11 

coastline towards the inland area (Wahbi et al., 2019), covering an approximate area of 95 km2. Given that most 12 
of Tangier’s coastlines are sandy, and urbanization typically occurs in these coastal areas, Table 9 shows the 13 
percentage variations of these areas, while Figs. 12–15 illustrate the evolution of urban development along the 14 
coastline. The total land gained during the observation period reached 30.03 km2, indicating that approximately 15 
1 305 652 m2 of the coastline was transformed into urban areas annually throughout the study period. Table 10 16 
depicts the periods of urban expansion at the expense of the sea between 2000 and 2023. 17 

Data analysis (Figs. 8–10) highlights that the first period (2000–2008) witnessed the lowest urban growth at 18 
the expense of the coastline, with only approximately 7.56 km2 of land reclaimed, accounting for 25.2% of the 19 
total area. The period between 2008 and 2015 did not show a remarkable increase, with an estimated 9.57 km2 of 20 
urbanized land. However, beyond 2015, it marked the most significant spatial expansion into the sea, where 21 
approximately 43% of the reclaimed land was developed between 2015 and 2023 (Fig. 11). During this period, the 22 
coastal zone lost 12.90 km2 under the pressure of urbanization, with an average annual increase of 1.61 km2/year. 23 

 24 
Table 9. The evolution of urban growth at the expense of the coastal areas between 2000 and 2023 25 

Period Area filled km2 Percentage % Annual growth km2 Percentage% 
2000/2008 7.56 25.2 0.94 23.98 
2008/2015 9.57 31.86 1.37 34.95 
2015/2023 12.90 42.96 1.61 41.07 

Total 30.03 100 3.92 100 
 26 

MARINE WATER
6%

FOREST
16%

ARTIFICIAL 
TERRITORIES

16%

CONTINENTAL 
WATERS 4%

VEGETATION 31%

SAND 
AND 

DUNE 7%

BARE SOILS 20% MARINE WATER 6%

FOREST 
11%

ARTIFICIAL 
TERRITORIES

12%

CONTINENTAL 
WATERS 3%

VEGETATION 35%

SAND AND 
DUNE 7%

BARE SOILS 26%

MARINE WATER  
6%

FOREST 19%

ARTIFICIAL 
TERRITORIES 

20%

CONTNENTAL 
WATERS  7%

VEGETATION 27%

SAND AND 
DUNE  7%

BARE SOILS 
14%

 

9 

            1 
Fig. 9. Land use distribution in 2008–2015.                           Fig. 8. Land use distribution in 2000–2008 2 
 3 

             4 
                 Fig. 10. Land use distribution in 2015–2023 5 
 6 

Table 8. Land use evolution of Tangier between 2000 and 2023 7 
Land 

occupation 
Area km2 Variation % 

2000/2023 2000 2008 2015 2023 
Marine water 52.91 47.24 47.62 50.15 −5 

Forest 109.33 100.14 133.30 154.28 41.11 
Artificial land 69.23 82.55 148.37 155.46 124.55 
Continental 

water 
23.21 26.38 25.21 25.36 9.26 

Vegetation 260.44 230.24 224.72 180.70 −30.61 
Sand and dune 60.02 47.88 57.79 50.27 −16.24 

Bare land 160.74 201.41 97.66 119.24 −24.81 
 8 

Urban expansion of Tangier coastal zone 9 
 10 
To estimate the coastal development degree, a distance of 10 kilometers was used, extending from the 11 

coastline towards the inland area (Wahbi et al., 2019), covering an approximate area of 95 km2. Given that most 12 
of Tangier’s coastlines are sandy, and urbanization typically occurs in these coastal areas, Table 9 shows the 13 
percentage variations of these areas, while Figs. 12–15 illustrate the evolution of urban development along the 14 
coastline. The total land gained during the observation period reached 30.03 km2, indicating that approximately 15 
1 305 652 m2 of the coastline was transformed into urban areas annually throughout the study period. Table 10 16 
depicts the periods of urban expansion at the expense of the sea between 2000 and 2023. 17 

Data analysis (Figs. 8–10) highlights that the first period (2000–2008) witnessed the lowest urban growth at 18 
the expense of the coastline, with only approximately 7.56 km2 of land reclaimed, accounting for 25.2% of the 19 
total area. The period between 2008 and 2015 did not show a remarkable increase, with an estimated 9.57 km2 of 20 
urbanized land. However, beyond 2015, it marked the most significant spatial expansion into the sea, where 21 
approximately 43% of the reclaimed land was developed between 2015 and 2023 (Fig. 11). During this period, the 22 
coastal zone lost 12.90 km2 under the pressure of urbanization, with an average annual increase of 1.61 km2/year. 23 

 24 
Table 9. The evolution of urban growth at the expense of the coastal areas between 2000 and 2023 25 

Period Area filled km2 Percentage % Annual growth km2 Percentage% 
2000/2008 7.56 25.2 0.94 23.98 
2008/2015 9.57 31.86 1.37 34.95 
2015/2023 12.90 42.96 1.61 41.07 

Total 30.03 100 3.92 100 
 26 

MARINE WATER
6%

FOREST
16%

ARTIFICIAL 
TERRITORIES

16%

CONTINENTAL 
WATERS 4%

VEGETATION 31%

SAND 
AND 

DUNE 7%

BARE SOILS 20% MARINE WATER 6%

FOREST 
11%

ARTIFICIAL 
TERRITORIES

12%

CONTINENTAL 
WATERS 3%

VEGETATION 35%

SAND AND 
DUNE 7%

BARE SOILS 26%

MARINE WATER  
6%

FOREST 19%

ARTIFICIAL 
TERRITORIES 

20%

CONTNENTAL 
WATERS  7%

VEGETATION 27%

SAND AND 
DUNE  7%

BARE SOILS 
14%

 

9 

            1 
Fig. 9. Land use distribution in 2008–2015.                           Fig. 8. Land use distribution in 2000–2008 2 
 3 

             4 
                 Fig. 10. Land use distribution in 2015–2023 5 
 6 

Table 8. Land use evolution of Tangier between 2000 and 2023 7 
Land 

occupation 
Area km2 Variation % 

2000/2023 2000 2008 2015 2023 
Marine water 52.91 47.24 47.62 50.15 −5 

Forest 109.33 100.14 133.30 154.28 41.11 
Artificial land 69.23 82.55 148.37 155.46 124.55 
Continental 

water 
23.21 26.38 25.21 25.36 9.26 

Vegetation 260.44 230.24 224.72 180.70 −30.61 
Sand and dune 60.02 47.88 57.79 50.27 −16.24 

Bare land 160.74 201.41 97.66 119.24 −24.81 
 8 

Urban expansion of Tangier coastal zone 9 
 10 
To estimate the coastal development degree, a distance of 10 kilometers was used, extending from the 11 

coastline towards the inland area (Wahbi et al., 2019), covering an approximate area of 95 km2. Given that most 12 
of Tangier’s coastlines are sandy, and urbanization typically occurs in these coastal areas, Table 9 shows the 13 
percentage variations of these areas, while Figs. 12–15 illustrate the evolution of urban development along the 14 
coastline. The total land gained during the observation period reached 30.03 km2, indicating that approximately 15 
1 305 652 m2 of the coastline was transformed into urban areas annually throughout the study period. Table 10 16 
depicts the periods of urban expansion at the expense of the sea between 2000 and 2023. 17 

Data analysis (Figs. 8–10) highlights that the first period (2000–2008) witnessed the lowest urban growth at 18 
the expense of the coastline, with only approximately 7.56 km2 of land reclaimed, accounting for 25.2% of the 19 
total area. The period between 2008 and 2015 did not show a remarkable increase, with an estimated 9.57 km2 of 20 
urbanized land. However, beyond 2015, it marked the most significant spatial expansion into the sea, where 21 
approximately 43% of the reclaimed land was developed between 2015 and 2023 (Fig. 11). During this period, the 22 
coastal zone lost 12.90 km2 under the pressure of urbanization, with an average annual increase of 1.61 km2/year. 23 

 24 
Table 9. The evolution of urban growth at the expense of the coastal areas between 2000 and 2023 25 

Period Area filled km2 Percentage % Annual growth km2 Percentage% 
2000/2008 7.56 25.2 0.94 23.98 
2008/2015 9.57 31.86 1.37 34.95 
2015/2023 12.90 42.96 1.61 41.07 

Total 30.03 100 3.92 100 
 26 

MARINE WATER
6%

FOREST
16%

ARTIFICIAL 
TERRITORIES

16%

CONTINENTAL 
WATERS 4%

VEGETATION 31%

SAND 
AND 

DUNE 7%

BARE SOILS 20% MARINE WATER 6%

FOREST 
11%

ARTIFICIAL 
TERRITORIES

12%

CONTINENTAL 
WATERS 3%

VEGETATION 35%

SAND AND 
DUNE 7%

BARE SOILS 26%

MARINE WATER  
6%

FOREST 19%

ARTIFICIAL 
TERRITORIES 

20%

CONTNENTAL 
WATERS  7%

VEGETATION 27%

SAND AND 
DUNE  7%

BARE SOILS 
14%

Table 8. Land use evolution of Tangier between 2000 and 2023

Land occupation
Area km2

Variation %
2000/20232000 2008 2015 2023

Marine water 52.91 47.24 47.62 50.15 −5

Forest 109.33 100.14 133.30 154.28 41.11

Artificial land 69.23 82.55 148.37 155.46 124.55

Continental water 23.21 26.38 25.21 25.36 9.26

Vegetation 260.44 230.24 224.72 180.70 −30.61

Sand and dune 60.02 47.88 57.79 50.27 −16.24

Bare land 160.74 201.41 97.66 119.24 −24.81

Fig. 8. Land use distribution in 2000–2008

Fig. 9. Land use distribution in 2008–2015

Fig. 10. Land use distribution in 2015–2023
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Table 9. The evolution of urban growth at the expense of the coastal areas between 2000 and 2023

Period Area filled km2 Percentage % Annual growth km2 Percentage%

2000/2008 7.56 25.2 0.94 23.98

2008/2015 9.57 31.86 1.37 34.95

2015/2023 12.90 42.96 1.61 41.07

Total 30.03 100 3.92 100

Table 10. Land use changes between 2000 and 2023 for the land artificialization and sand dune classes

Land use
Area km2

Variation 
2000/20232000 2008 2015 2023

Artificial land 7.3 7.82 11.31 14.50 98.63

Sand and dune 23.22 16.19 14.33 13.40 −42.29

Fig. 11. The variation in urbanization rates about sandy terrains between 2000 and 2023

Fig. 12. Coastal land lost to urban growth in 2000 Fig. 13. Coastal land lost to urban growth in 2008
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Fig. 14. Coastal land lost to urban growth in 2015 Fig. 15. Coastal land lost to urban growth in 2023
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this period, the coastal zone lost 12.90 km2 under the 
pressure of urbanization, with an average annual in-
crease of 1.61 km2/year.

The evolution of the coastal urban landscape
The coastal landscape of Tangier has changed as land 
use patterns evolved, influenced by the socio-econom-
ic context and urban policies. In Tangier, the urban de-
velopment around the bay has notably increased, driv-
en mainly by the redevelopment of Tangier City Port. 
The port area has undergone significant expansion, 
growing from 160 ha in 2000 to a vast 84 000 m2 by 
2023. The conversion of the historic port began in 2011, 
contributing to the observed increase in urbanization 
between 2008 and 2015.

Along the coastal areas, various tourism projects have 
been established, such as the Ghandouri project in Tang-
ier. This initiative has changed the bay’s landscape by in-
troducing luxurious accommodations like 5-star hotels, 
charming riads, and welcoming guesthouses. The Ghan-
douri development zone covers 60 hectares on the west-
ern edge of the bay, including an 18-ha forest, forming 
a sloping coastal strip that stretches over 1200 meters. 

On the Atlantic coastline, different tourist and residen-
tial projects have been established along the shore. One 
significant project is the Al Houara Resort in Tangier, 
which was revealed in 2008. It covers an area of 234 
hectares, including forests, wetlands, and sandy beach-
es. Al Houara Resort aimed to build three hotels, 15 vil-
las, and around 180 apartments. The significant impact 
of this undertaking is evident in the land use map.

However, the Tangier Atlantic coastline has faced is-
sues due to sand extraction, especially during the real 
estate boom in 1980 at Sidi Kacem Beach and in 1990 
at Haoura Beach, which was stopped in 2006. This con-
tinuous extraction has increased the erosion risk for 
Tangier’s sandy beaches. By the end of  2010, using 
satellite imagery, the Ministry of Equipment identified 
high-risk zones and classified beaches based on their 
level of degradation. The Tangier-Assilah beaches were 
ranked second among the most affected areas. Adding 
to these challenges, the Rocade des Deux Mers, a pro-
ject initiated in Tangier by King Mohammed VI in 2014, 
aims to create an important link between the Atlantic 
and the Mediterranean.

Conclusion
Tangier City is situated within a context marked by 
strong population growth, intense urbanization, and 
significant economic and touristic development. This 
urbanization is accompanied by peri-urbanization, and 
urban sprawl, leading to real estate developments that, 
to some extent, occur in a disorderly and uncontrolled 
manner. Given Tangier’s coastal location, this rapid 
urbanization and densification of the coastline inevi-
tably lead to increased pressures on the coastal area 
and associated challenges that need to be addressed. 
Throughout this study, we capitalized on freely availa-
ble multi-source and multi-date remote sensing data, 
as well as GIS tools, notably on Google Earth Engine, 
to map artificialized surfaces. The primary objective 
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was to gain a better understanding of the spatiotem-
poral evolution of land reclaimed from the sea and its 
designated usage. The results obtained through the 
supervised classification of Landsat images using the 
random forest algorithm on the GEE platform, com-
bined with the use of indicators (MNDWI, NDVI) during 
sampling, yielded highly satisfactory outcomes. The 
high values obtained for classification accuracies and 
Kappa coefficients have significantly minimized the 
risk of confusion between land use classes that are 
spectrally similar despite belonging to two different 
environments.

These results affirm substantial changes in land use 
in the Tangier region over 23 years (from 2000 to 
2023), indicating significant urban expansion, notably 
in coastal areas. To better comprehend the evolution 
of land use changes, we compared the areas occupied 
by each class in 2000, 2008, 2015, and 2023. The spa-
tiotemporal evolution of land reclaimed from the sea 

and its designated usage was analyzed during three 
periods: 2000–2008, 2008–2015, and 2015–2023. These 
results were complemented by statistical calculations 
of coastal change rates. According to the findings, the 
analyzed classes can be grouped into two categories. 
The first category demonstrates surface gains over 
time, especially the artificialized zones and forest class-
es, with their areas increasing by 8% from 2000–2008 
to 2015–2023, followed by continental waters, which 
occupied 7% of the total studied area in 2015–2023, 
compared with 3% in 2000–2008. The second category 
consists of classes experiencing surface loss, namely 
bare soils and vegetation, which successively lost 12% 
and 8% of their surface.

Monitoring urbanization over these 23 years reveals that 
the city has expanded at the expense of the coastal area, 
covering an area of approximately 30.03 km2 since 2000. 
In 2023, urban areas along the Tangier coastline account 
for 15%, primarily concentrated on sandy shores.
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