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The choice of an approach for accurate forecasting of photovoltaic power plants and modeling of power systems 
with renewable energy sources depends on the availability of input data, time horizon, installation location, and 
weather variables. Our goal is to improve mathematical models and find new solutions to improve the perfor-
mance of predicting the operation of photovoltaic power plants in energy systems using regression models. There 
is a problem of predicting the amount of electricity generated by photovoltaic plants in Ukraine. The data for 3 
years of daily electricity production is used. The problem is solved by the application of the least squares’ method 
to estimate unknown parameters of the suggested dependence between the length of daylight and daily solar 
power generation. The main assumption is the following: daily solar power generation can be given as a linear 
combination of some exponential polynomials with the independent variable as the duration of the sunny day. The 
regression model is reduced to a system of significantly non-linear equations, which is solved numerically by the 
iteration method. Regression models were built using R software for big data analysis. Another novelty moment 
concerns grouping of the data according to the same length of daylight, and then three values were found for each 
such group: maximum, minimum, and average value. The proposed moving average regression models with the 
usage of exponential polynomials as approximating functions admit a small standard residual error between the 
exact values and the predicted values of solar power generation (0.3022 kWh). The forecasting horizon is one year. 
The significance of the created mathematical forecasting models demonstrates a possibility of using the daylight 
duration as a parameter in forecasting tasks, as well as evaluating the prospects to consider the parameters that 
affect the performance of photovoltaic power plants.

Keywords: photoelectric power plant, regression forecasting model, length of daylight, cloudiness factor, expo-
nential polynomial.
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Introduction
Most of the world’s energy is changing as the share of 
solar and wind power in the energy system increases. 
These generation sources are characterized by the var-
iation and variability of the amount of electricity that is 
supplied to the grid depending on the generation time. 
The main factors affecting the production and efficien-
cy of photovoltaic power plants are variables of the 
sunlight during the daytime, temperature and humidity 
(Erten and Aydilek, 2022; Meghea, 2023; Meghea and 
Mihai, 2018). In the case of using time variable, it is 
possible to get mathematical dependencies for evalu-
ation of their effect on main parameters. The obtained 
time dependencies also allow determining the exact 
limits of changes in the generation capacity of photo-
voltaic stations (PES) for improved predictions used by 
operators in energy markets.

In Ukraine, the importance of balancing loads due to 
missile attacks on the power system has increased. In 
February 2022, Russia attacked Ukraine and started 
a full-scale war. From September 2022 to the pres-
ent, the Russian army has carried out more than a 
thousand strikes on thermal and hydroelectric power 
plants, substations and gas storage facilities, and oc-
cupied the Zaporizhzhia nuclear power plant (its capac-
ity is 6 GW). Most of the power units of thermal pow-
er plants and the Kakhovka hydroelectric power plant 
were destroyed, and the total loss of installed capacity 
of the Ukrainian power system is more than 20 GW 
(for comparison, peak consumption in Ukraine per day 
is 14–20 GW), although energy workers are restoring 
power equipment every day. Most often, the generation 
of photovoltaic power plants is limited (about 500 MW). 
Depending on the balance of electricity consumption 
and generation, operators give commands to balancing 
group and individual power plants to reduce genera-
tion during certain hours. This leads to the loss of their 
profits (Kim et al., 2021; Batsala et al., 2021a; Batsala 
et al., 2023). Operators turn off some grid loads man-
ually at local power plants or automatically turn off in-
verters, and limit inverter capacity where it is possible. 
The issue of power loss can be partially resolved by us-
ing storage systems, but their cost does not allow for 
quick results. Therefore, the role of accurate forecasts 
in balancing groups is growing.

The laws «About the EU Battery Regulation» and «On 
the electricity market» have become a big incentive for 

scientific research. They encourage the use of local en-
ergy storage systems for energy market participants 
and introduce the need to predict hourly electricity con-
sumption for a day ahead.

Artificial intelligence (Bracale et al., 2013; Chen et al., 
2011) and neural networks (Leva et al., 2017; Dolara et 
al., 2015) are popular and known forecasting methods. 
NASA uses a huge amount of satellite data for weath-
er forecasting as well as forecasting electricity gen-
eration. Through data science and machine learning, 
users gain access to modern predictive models that 
use different inputs. When input parameters change, 
the system applies “overfitting” to refine output pa-
rameters. A separate group of forecasting methods is 
generated by support vector machines (De Giorgi et al., 
2016; Lin and Pai, 2016), splines (Massidda and Marro-
cu, 2017; Wang et al., 2016), wavelets (Zhu et al., 2016; 
Luo et al., 2021), and other optimization methods (Das 
et al., 2018, El Hendouzi and Bourouhou, 2020). Since 
weather conditions themselves are subject to the cha-
os theory, insolation changes chaotically from day to 
day. Therefore, ordinary differential equations (Liang et 
al., 2020) and partial differential equations (Said et al., 
2021) are rarely used for a prediction of electric power 
generation of photovoltaic stations.

Regression forecasting models (Zhang et al., 2015, Pe-
dro and Coimbra, 2012) have been often used for var-
ious tasks in energy, such as predicting energy con-
sumption. For example, Erten and Aydilek (2022) have 
demonstrated the results of using four different regres-
sion models to predict solar energy: linear regression, 
logistic regression, Lasso regression and elastic re-
gression. The use of different input data was justified, 
including wind speed, sun position, temperature, direct 
irradiation, diffuse irradiation, reflected irradiation, rela-
tive humidity, ambient temperature, accumulated dust, 
dew point temp, total cloud cover, date, time, radiation, 
sun rise time and sun set time, percent cloud, solar az-
imuth and elevation, and dataset clear sky index. Many 
input parameters increase the calculation time, and 
some functions can reduce the accuracy of the forecast. 
To decrease the time of calculation, it is possible to use 
genetic algorithms (Ratshilengo et al., 2021).

Meghea (2023) and Meghea and Mihai (2018) have 
used the division of experimental data into stationary 
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time series with seasonality using the CUSUM meth-
od (cumulative sum control chart). The considered 
time series were formed by hourly data, and this was 
used to forecast the average specific power. The data 
were smoothed out using a moving average regression 
model and forecast specific power for the next day, 
next week and next month.

In a study by Kim et al. (2021), 12 regression models 
were developed for monthly data, and the calculation 
of electricity generation by a solar power plant when 
weather conditions change was estimated using R lan-
guage software. The dependent variable was the dai-
ly generation of electricity by the solar power plant in 
kWh, and the independent variables were the intensity 
of insolation during daylight hours (MJ/m2), light time 
(h), average relative humidity (%), minimum relative 
humidity (%), and amount of evaporation (mm). Predic-
tion for photovoltaic stations can be performed using 
harmonic functions, using autoregression-integral mo- 
ving average (ARIMA) models, as well as considering 
weather correlation coefficients (Batsala et al., 2021a). 
Combining forecast models of photovoltaic station per-
formance with accurate weather forecasts and analysis 
of electricity quality allows increasing the efficiency of 
photovoltaic stations by controlling the main parame-
ters of local networks (Batsala and Hlad, 2023). Com-
parison of approximation of electric power generation 
curves using the trigonometric function and the unction 
of normal distribution law for a day ahead forecast is 
shown in other scholars’ works (Batsala et al., 2021b).

In a study by Mei et al. (2018), the authors developed 
a hybrid online model for ultra-short-term prediction 
of the production of photovoltaic stations for network 
dispatching every 5 minutes. The online model uses 
weather monitoring data, which is divided into four 
typical weather conditions (sunny, cloudy, rainy weath-
er and cloudy day). In online prediction, autoregression 
(ARIMA) was used to predict solar irradiation. The ac-
curacy of forecast weather models is highly dependent 
on the sensitivity of the weather forecast input. Leva et 
al. (2017) have shown a method of predicting photovol-
taic energy based on CNM using the cloud index. The 
index affects the accuracy of the forecast depending on 
the chosen training data set. More extended literature 
reviews on modern investigations in the topic have 
been published (Iheanetu, 2022; Tuohy et al., 2015; 
Raza et al., 2016).

The splines (Massidda and Marrocu, 2017; Wang et al., 
2016) can also be referred to as regression methods. 
Specifically, the method of multivariate adaptive re-
gression splines involves building a functional relation-
ship as a set of coefficients and basic functions solely 
from available data using a “divide and conquer” strat-
egy in which the input space is divided into regions and 
a regression equation is evaluated for each of these 
regions. The method allows the selection of appro-
priate levels of the complexity of the model. A simple 
model was presented with only two input parameters, 
namely the solar radiation on the plane of array and the 
total cloud cover albeit without any limitations on the 
maximum degree of the interpolating function. A more 
complex model was obtained using global horizontal 
radiation, total cloud cover, and values of pressure, 
temperature, and wind speed, in conjunction with the 
cosine of the angle of incidence between the sun rays 
and the surface.

Another study (Lin and Pai, 2016) has developed an 
evolutionary seasonal decomposition least-square 
support vector regression to forecast monthly solar 
power output. The construction of the regression used 
a seasonal decomposition and the least-square sup-
port vector regression, and its parameters were cho-
sen by genetic algorithms.

Monitoring and management of a photovoltaic system 
is very important for sending information that allows 
owners to maintain, operate and control these sys-
tems in order to reduce maintenance costs and avoid 
unwanted electric power disruptions. Different monito- 
ring and management systems are discussed (Bekirov 
et al., 2019; Beranek et al., 2018; Rahman et al., 2018; 
Reatti et al., 2019). The published works consider the 
following requirements: circuit complexity, availability 
of friendly graphical user interface, easy-to-under-
stand system architecture, maintenance facility and 
customization possibility for an end-user. The most 
detailed review of various monitoring and manage-
ment technologies with system attributes and working 
structures has been presented by Beranek et al. (2018) 
to get a clear view of merits and demerits of existing 
photovoltaic monitoring and management systems.

Recently, many researchers have implemented various 
predictive modeling techniques such as artificial neu-
ral networks, fuzzy predictions, and support vector re-
gressions for photovoltaic generation. However, most 
of these models are not applicable in making accurate 

https://www.sciencedirect.com/topics/engineering/monitoring-system
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predictions because they do not have sufficient prima-
ry source data. This suggests that the predictability of 
the models could be improved if more raw data are ac-
cumulated. This study aimed to propose a non-linear 
regression model to easily predict solar power accor- 
ding to the changes in the duration of the sunny days 
and weather conditions. To achieve this objective, a 
non-linear regression analysis technique was applied 
to the big data on the solar power generation around 
the area where the solar power plant was installed. 
Non-linear regression has some benefits: regression 
is relatively simple to understand and realize, and it can 
be applied to model the relationship between a contin-
uous outcome variable and one or more predictor vari-
ables. Moreover, it is widely used and well-understood, 
so there is a wealth of resources available for learning 
about it and using it effectively. Together with some 
benefits, the regression also has drawbacks. It can be 
sensitive to outliers, which can affect the estimated co-
efficients and the predictions made by the model. Given 
this, the robustness of the approach to noise can be 
low. But it can be higher for several types of regression 
analysis. For example, lasso regression (Erten and Ay-
dilek, 2022) is a regression analysis method that uses 
a regularization term in the optimization process. The 
regularization term is a penalty applied to the coeffi-
cients of predictor variables in the model, which helps 
to prevent overfitting by reducing the complexity of the 
model. It is given by the l1-norm. Lasso regression is 
particularly useful for selecting important features in 
a dataset since it tends to drive the coefficients of un-
important features to zero. In the context of solar pow-
er prediction, Lasso regression can be used to select 
the most important features in the dataset, which can 
improve the accuracy of predictions. Lasso regression 
uses the tuning positive parameter t ≥ 0, which controls 
the amount of shrinkage. Elastic regression is a type 
of regression that combines the strengths of both las-
so and ridge regression. Like lasso regression, it uses 
a regularization term in the optimization process to 
prevent overfitting. However, unlike lasso regression, 
which uses the l1 norm as the regularization term, 
elastic regression uses a linear combination of the l1 
and l2-norms. This allows elastic regression to balance 
the trade-off between model complexity and goodness 
of fit, which can be beneficial in some situations.

Since weather patterns and locational atmospheric con-
ditions vary considerably both spatially and temporally, 

solar forecasting accuracy is dependent on the geo-
graphic location and timescale of the data. Two key fac-
tors that impact the accuracy of solar forecasting are 
geographic locations and forecast timescales. There is a 
very detailed analysis (Zhang et al., 2015) of solar power 
plant generation at multiple geographic regions at mul-
tiple timescales to quantify the effects of geographic lo-
cation and forecast horizon on the forecasting accuracy 
of regression methods. Different time and geographic 
scales influence the severity of up- or down-ramps in 
solar power output. Forecasting solar power can help 
reduce the uncertainty involved with the power supply. In 
addition, the distribution of errors at a larger geographic 
area has a more pronounced peak, slimmer shoulders, 
and longer tails (Zhang et al., 2015). This observation 
indicates that relative forecast errors are smaller for a 
large geographic area, which shows the smoothing ef-
fect from geographic diversity for solar. The normalized 
root mean square error values become smaller with an 
increasing geographic area, which shows that the solar 
forecast performs relatively better for larger regions. 
Another key gap in developing solar forecasting mod-
els is the unavailability of a consistent and robust set of 
metrics to measure and assess the improvement in fore-
casting accuracy, because different researchers use im-
provements described by different metrics as their own 
evaluation criteria. In addition, it is not clear whether the 
traditional statistical metrics used to evaluate forecasts 
best represent the needs of power system operators. 
One should be aware of a few important considerations 
when selecting the appropriate metrics for evaluating 
the performance of solar power forecasting of regres-
sion methods. First, because skewness and kurtosis 
are not standalone metrics, it is recommended that the 
metrics of mean bias error, standard deviation, skew-
ness, kurtosis, and the distribution of forecast errors 
should be used as a group. In addition, it is important to 
select at least one metric from each class, determined 
through the nonparametric statistical testing. Thus, for 
a comprehensive, consistent, and robust assessment 
of the performance of solar power forecasts, a suite of 
metrics consisting of mean bias error, standard devia-
tion, skewness, kurtosis, distribution of forecast errors, 
and Rényi entropy is recommended. One of the biggest 
concerns associated with integrating a large amount of 
solar power into the grid is the ability to handle large 
ramps in solar power output, which are often caused 
by cloud events and extreme weather events (Mills and 
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Wiser, 2010). Different time and geographic scales influ-
ence the severity of up- or down-ramps in solar pow-
er output. Forecasting solar power can help reduce the 
uncertainty and noise involved with the power supply. 
The swinging door algorithm was suggested to identify 
ramps over varying time frames because of its flexibility 
and simplicity (Florita et al., 2013). The swinging door 
algorithm extracts ramp periods in a series of power 
signals by identifying the start and end points of each 
ramp. The user sets a threshold parameter ε that influ-
ences the algorithm’s sensitivity to ramp variations. The 
tunable parameter ε directly characterizes the threshold 
sensitivity to noise and/or insignificant fluctuations to 
be specified. With a smaller ε value, many small ramps 
will be identified; with a larger ε value, only a few large 
ramps will be identified. 

In view of this, the approach proposed in this article 
below requires further research on robustness to the 
noise with use of a suite of statistical metrics and the 
swinging door algorithm. Determining the necessary 
main input parameters for predicting the electricity 
production of photovoltaic stations can help to sim-
plify forecast models. The selection of the solar day 
duration input parameter has not been used before. 
Determining the time interval of electricity production 
by photovoltaic plants helps to improve daily forecast 
models. Perhaps, the correctness of building the re-
gression model that uses only the duration of a sunny 
day raises questions, since it does not use meteorolog-
ical factors. Therefore, the accuracy of the model can 
be significantly lower than that of similar short-term 
solutions. However, this study does not aim to make 
traditional short-term forecasts. Its goal is to provide a 
long-term average forecast of electricity production by 
solar power plants throughout the year. Temperature, 
insolation, cloud cover, etc. are all weather factors that 
have a short duration. They change chaotically every 
day. Therefore, it is difficult to take them into account 
separately in long-term forecasting. For a particular 
area, weather factors have a certain average impact on 
solar electricity production over several years. At the 
same time, the length of daylight hours is a constant 
factor that has a periodic effect. In view of this, we tried 
to build a two-component model, based on the max-
imum values of electricity production, which refers to 
the best weather conditions for a given area, and on the 
average values of electricity production, which is due to 
the average weather conditions inherent in a particular 

area. Other research studies (Kim et al., 2021) show that 
such meteorological variables as the insolation inten-
sity at the peak time (MJ/m2), insolation intensity du- 
ring daylight hours (MJ/m2), daylight time (h), average 
relative humidity (%), minimum relative humidity (%), 
and amount of evaporation (mm) demonstrate a suffi-
ciently strong correlation with solar power generation. 
In the study by Kim et al. (2021) the biggest correlation – 
0.833 – was obtained for daylight time. Other mentioned 
factors showed correlations between 0.442 and 0.770. 
But their nature is completely random and/or chaotic. 
They are very sensitive to the initial data and a small er-
ror can cause significant changes, as is usually the case 
with meteorological factors. Given this, only a model 
using the duration of sunny days is considered.

Methods
Data sampling is a very important part of research. In 
this work, statistical data were obtained at photovolta-
ic stations located near the cities Ivano-Frankivsk and 
Kryvyi Rih for different periods of time: from 2014 to 
2016 and from 2019 to August 2023. The first period 
was the training dataset, and the second period was 
the test dataset. In the paper, we calculated standard 
residual errors for training and test datasets separately 
to compare models and take into account overfitting. 
Grid-connected photovoltaic stations were selected 
for analysis. A typical photovoltaic plant includes solar 
modules (such as Chaori Solar, JinkoSolar, SUNOWE 
and others) and inverters (Fronius, Schneider, Huawei, 
KASO POWADOR). For photovoltaic plants with a ca-
pacity of more than 1 MW, inverters are connected to 
the low-voltage sections of transformer substations 
with a capacity of 1000 kVA. Photoelectric stations with 
lower power are connected directly to the 0.38 kV net-
work. The productivity of power plants depends on the 
total amount of solar insolation for the given period.

The obtained statistics contain specific power values 
for each hour in each period, and all these data were 
reduced to a power of 1 kW. The data were collected 
using open platforms for monitoring the performance 
of photovoltaic stations (Solar Edge), as well as an elec-
tricity metering system from a local energy company. 
Half of the data correspond to zero at night. Fig. 1 shows 
changes for a week in July 2023 in the performance of 
a 37-kW solar power plant in Zarichchia village, Iva-
no-Frankivsk region, Ukraine. This photovoltaic station 
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uses Risen RSM120-330M solar panels and a Huawei 
SUN2000-33KTL-A inverter. On summer days with a 
reduced amount of solar insolation due to cloudiness, 
the performance of a photovoltaic station decreases.

For comparison, we used another 36 kW photovolta-
ic plant in the city of Kryvyi Rih, Ukraine. This photo-
voltaic plant on Tabyrna street in the city of Kryvyi Rih 
is designed for 66 Trina Solar panels with a capacity 
of 540 W, which are connected through the Huawei 
SUN2000-30KTL-M3 inverter. Below, approximating 
formulas (Eq. 1 and Eq. 2) are presented to estimate 
solar power generation for this station. Due to Russian 
attacks on the Ukrainian energy sector, all information 
on power plants is in closed access and not publicly 
available. Therefore, it is impossible to give a more 
comprehensive and deep analysis for diverse geo-
graphical locations in Ukraine.

Fig. 2 demonstrates a weekly schedule of daily electrici-
ty production at this power plant in December 2022. The 
maximum power of the power plant is reduced by almost 
10 times, and due to a decrease in the duration of a sunny 
day, the productivity of the power plant is even lower.

To build the model, data for 3 years of daily electricity 
production by a solar power plant depending on the du-
ration of daylight hours were used. As a result of math-
ematical processing of statistical data, these indicators 
were grouped by the same duration of daylight hours 
with an accuracy of up to a minute, and then an aver-
age value was found for each group. Accordingly, 278 
different durations were obtained.

Figs. 3, 4 and 5 show 3 diagrams obtained after the 
initial grouping and estimation of the specified values 
(maximum, average and minimum values).

Fig. 1. Daily generation of solar energy in July 2023 (37 kW photovoltaic power plant in Zarichchia village, Ivano-Frankivsk region, Ukraine. 
Figure source:) SolarEdge, (n.d.)
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Fig. 2. Daily solar power generation in December 2022 (37 kW photovoltaic power plant in Zarichchia village, Ivano-Frankivsk region, 
Ukraine. Data source: SolarEdge, (n.d.)

Fig. 3. Maximum electricity production by the photovoltaic plant depending on the length of daylight (Source: built by the authors based on 
data from SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk region, Ukraine)
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Fig. 4. Average electricity production by the photovoltaic plant depending on the length of daylight (Source: built by the authors based on 
data from SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk region, Ukraine)

Fig. 5. Minimum electricity production by the photovoltaic plant depending on the length of daylight (Source: built by the authors based on 
data from SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk region, Ukraine)

From these diagrams, even the highs, lows and aver-
ages of the electricity generated are subject to vari-
ous perturbations and it is difficult to find a successful 
curve that would best describe them. However, the least 
squares method was applied to determine the parame-
ters of such a function, which would provide a minimum 

sum of squares of the differences between the predicted 
and real fluctuations in production. The initial assump-
tions about the shape of such a function were:
1  due to fluctuations in the diagram, the search function 

should contain periodic functions, such as cosines and 
sines;
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2 due to the gradual growth of graphs, an unknown 
function must also contain polynomials, as factors of 
periodic functions, and a power function, as terms.

Below, regression models (1), (4) which overlap condi-
tions 1)-2) are presented. Mathematically, these curves 
are entire functions of the exponential type. Moreover, 
they have a bounded index (for more details on fine 
properties of this function class see Bandura, 2017; 
Bandura and Skaskiv, 2017).

The data of power generation will be fitted with such a 
curve of power generation:
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1) due to fluctuations in the diagram, the search function should contain periodic functions, such as cosines 1 
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 11 

where y is the electricity production, x is the duration of daylight hours, and a_j are the unknown real parameters. 12 
They were estimated by the least squares method, j∈{1,2,...,7}. 13 

 14 
Results and Discussion 15 

 16 
One should take into consideration that the main criteria to select models are a minimized standard residual 17 

error and a maximized coefficient of determination. For example, these values were calculated for simpler 18 
regressions: a linear function 𝑦𝑦 = 𝑎𝑎𝑥𝑥 + b, a power function 𝑦𝑦 = 𝑎𝑎�𝑥𝑥��, an exponential function 𝑦𝑦 = 𝑎𝑎�𝑒𝑒���, a 19 
logarithmic function 𝑦𝑦 = 𝑎𝑎� + 𝑎𝑎� ln 𝑥𝑥, the first degree trigonometric polynomial 𝑦𝑦 = (𝑎𝑎�𝑥𝑥 + 𝑎𝑎�)𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎�𝑥𝑥 + 𝑎𝑎�), 20 
a sum of the trigonometric polynomial and linear function 𝑦𝑦 = (𝑎𝑎�𝑥𝑥 + 𝑎𝑎�)𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎�𝑥𝑥 + 𝑎𝑎�) + 𝑎𝑎�𝑥𝑥, and, at last, the 21 
function from Eq. (1). Consistently applying the procedure described below, the parameters and statistical 22 
characteristics of the above functions were estimated until we arrived at formula (1). 23 

Since the corresponding calculations are rather cumbersome due to the complex form of the function, and the 24 
corresponding system of 7 equations compiled for the least squares method l are also nonlinear (primarily the 25 
parameters for sine and the exponent for x), the authors decided to use the software implementation of this method 26 
for nonlinear expressions. One such option is the nls procedure in the R language and the Rstudio environment for 27 
statistical analysis and data processing. Running this procedure for maxima, using these initial approximations – 28 
a1 = 100, a2 = 200, a3 = 0.1, a4 = 200, a5 = 1, a6 = 1000, a7 = 0.4 – and formula (1) resulted in the parameter estimates 29 
presented in Table 1. 30 

 31 
Table 1. Estimations of parameters for maxima and formula (1) 32 

Parameter Estimate Std. Error t value Pr(>|t|) 
a1 6.479·10−4 3.084·10−4 2.101 0.0366 
a2 −6.055·10−1 2.288·10−1 −2.646 0.0086 
a3 1.054·10−1 3.534·10−3 29.946 2·10−16 
a4 1.970·102 2.107e+00 93.514 2·10−16 
a5 7.581·10−3 1.417·10−3 5.351 1.83·10−7 
a6 −3.202·101 9.510·101 −0.337 0.551339 
a7 −3.768·10−1 5.112·10−1 −0.737 0.165890 

Substituting this data in formula (1), we get a function describing the predicted electricity production 33 
 34 
𝑦𝑦 = (0.0006479 x − 0.6055)sin(0.1058𝑥𝑥 + 197) + 0.007581𝑥𝑥 − 32.02𝑥𝑥��.���� (2) 35 
 36 
with a standard residual error of 0.5597 kWh for the training dataset and 0.5732 kWh for the test dataset, 37 
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which for a scale of 6 parameters is not too large. 
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with a standard residual error of 0.4597 kWh for the 
training dataset and 0.5106 kWh for the test dataset, 
which for a scale of 6 parameters is not too large, and 
the R2 equals 0.7912.

If we plot the function from formula (2) and plot the pro-
duction data and the duration of daylight hours in the 
form of points, we obtain the diagram shown in Fig. 6.
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Its plot has the form shown in Fig. 7.

The current goal is to reduce the standard error of re-
siduals. To do this, some parameters were searched 
for such a curve for electricity production:
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 1 
Fig. 6. Maximum electric power generation by the photovoltaic station vs the duration of daylight hours and 2 

the forecast function (red line) with one harmonic (Source: built by the authors based on data from 3 
SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk region, Ukraine) 4 
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(6)

The standard residual error is 0.4812 kWh. In addition, 
the R squared equals 0.8753.

Fig. 6. Maximum electric power generation by the photovoltaic 
station vs the duration of daylight hours and the forecast function 
(red line) with one harmonic (Source: built by the authors based 
on data from SolarEdge Monitoring Platform for Zarichchia, Iva-
no-Frankivsk region, Ukraine)

Fig. 7. Maximum electric power generation by the photovoltaic 
station by duration of daylight hours and forecast function (red line) 
with two harmonics (Source: built by the authors based on data from 
SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk re-
gion, Ukraine)

Due to the increase in the error of the residuals, it is 
obvious that this option of clarifying the formula does 
not yield any improvement. 

If a point diagram for minimal electricity production de-
pending on the duration of a bright day is constructed, 
then a distribution shown in Fig. 8 is obtained.

Fig. 8. Minimum electricity production by the photovoltaic station 
by duration of daylight hours (Source: built by the authors based 
on data from SolarEdge Monitoring Platform for Zarichchia, Iva-
no-Frankivsk region, Ukraine)

Due to the large loosening of the data, including many 
days with zero production, the authors did not select 
the parameters of formula (1) by the least squares 
method in this case.

In view of this, the original formula (1) was further 
investigated for the average values of electricity pro-
duction. According to the scheme described above, the 
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least squares method (nls procedure) was used to ob-
tain parameter estimates for average electricity pro-
duction by the duration of days with two harmonics.

At initial approximation of a1 = 100, a2 = 200, a3 = 0.1, 
a4 = 200, a5 = 1, a6 = 1000, a7 = 0.4, a8 = 300, a9 = 100, 
a10 = 0.17, a11 = 30, the corresponding prediction func-
tion from formula (4) takes the form for Zarichchia:
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The standard residual error of 0.5173 kWh for the trai- 
ning dataset and 0.4921 kWh for the test dataset. Also, 
the coefficient of determination R2 is equal to 0.8956. 
A point diagram with a plot of the function is shown in 
Fig. 9.

Fig. 9. Average electricity production by the photovoltaic station 
by duration of daylight hours and forecast function (red line) with 
two harmonics (Source: built by the authors based on data from So-
larEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk region, 
Ukraine)

Finally, the advantages of the smoothing of fluctua-
tions in electricity production due to the moving aver-
age were used. To do this, a seven-day moving average 
for average data on daylight durations was obtained as 
the usual arithmetic mean without additional smoot- 
hing coefficients.
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where xt+i  is the average electricity production for the 
corresponding daylight hours; yt is the calculated mo- 
ving average.

Therefore, nls was run again for function (1) with these 
initial values: a1 = 100, a2 = 200, a3 = 0.1, a4 = 200, a5 = 1, 
a6 = 1000, a7 = 0.4. 

Estimations obtained are presented in Table 2.

Substituting these data in (1), a function describing 
the predicted electricity production was obtained for 
Zarichchia:
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a1 4.747·10−4 1.756·10−4 2.702 0.007318

a2 4.806·10−1 1.296·10−1 −3.710 0.000252

a3 1.054·10−1 1.737·10−3 60.673 2·10−16

a4 1.972·102 1.078 182.904 2·10−16

a5 7.559·10−3 7.789·10−4 9.705 2·10−16

a6 −3.704·101 6.210·101 −0.596 0.551339

a7 −3.999·10−1 2.879·10−1 −1.389 0.165890
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Conclusions
The use of regression models allows obtaining high ac-
curacy of forecasts. The best results were obtained for 
a 7-day moving average of electricity production by the 
photovoltaic plants with the coefficient of determina-
tion R2 0.9752 and 0.9832.

Comparison of the results revealed that the model is 
less dependent on weather factors. Other models did 
not group the data by daylight hours and did not take 
any averaging for the respective duration. Therefore, 
their estimates were more dependent on weather con-
ditions compared with ours. The accuracy of weather 
forecasts, especially cloud cover and solar insolation, 
can be quite low, which can affect the results.

Except for the case of maximum production by the 
duration of daylight hours, in the cases of average 
production and average moving for 7 days, the formu-
la in the form of trigonometric polynomials with two 
harmonics was chosen for the estimation, if the least 
squares calculations yielded a smaller standard error 
of the residuals, and in the remaining cases, the for-
mula in the form of trigonometric polynomials with 
one harmonic was used.

The results obtained prove the importance of monito- 
ring energy and meteorological parameters at photo-
voltaic power plants. The measured parameters allow 
us to consider trend or seasonal variation, to obtain 
new regression dependencies to improve the accuracy 

Fig. 10. 7-day moving average of electricity production by the pho-
tovoltaic plant by daylight durations and prediction function (red line) 
with one harmonic (Source: built by the authors based on data from 
SolarEdge Monitoring Platform for Zarichchia, Ivano-Frankivsk re-
gion, Ukraine)

of models or to simplify calculations in the absence of 
paid accurate forecasts. The prospect of improving the 
model is to create daily forecasts considering season-
ality, forecasts for shorter periods of time (3–6 hours), 
and the possibility of retraining the model. This allows 
the owners of local photovoltaic power plants to be-
come advanced active consumers in Smart Grid with 
the ability to choose forecast models depending on 
their financial and technical capabilities.

 The research confirms the usefulness of ARIMA mod-
els for predicting the operation of photovoltaic power 
plants, as well as changes in power and insolation of 
photovoltaic power plants in different geographical lo-
cations characterized by different climatic conditions. It 
is important to identify an adequate ARIMA model for 
locations with different climatic conditions each time. 
The accuracy of the model depends on the stability of 
meteorological conditions (fully sunny or cloudy day). 
The differences in the observed results indicate that 
ARIMA models are best suited for forecasting in stable 
conditions (sunny or cloudy), i.e., when the cloud cover 
changes frequently during the day, such models do not 
provide satisfactory forecasts. The modeling results 
presented in this article using ARIMA models show 
high accuracy for medium- and long-term forecasts 
but can be effective when combined with additional 
models.

It is important to note that when changing locations, 
it is necessary to select an appropriate ARIMA mod-
el, estimate its parameters, and check the model fit 
and forecasting ability. In future, further validation of 
the model for diverse geographical locations both in 
Ukraine and worldwide under varying weather condi-
tions is needed to enhance its generalizability.

The limitations of the suggested model are the follo- 
wing: 
• It is not applicable to estimate minimum power gener-

ation by the duration of daylight hours because cloud 
and weather conditions can lead to near-zero power 
output;

• It does not allow building-short term predictions for 
maximum and average power output because they 
also depend on the weather conditions.

Its potential application in real-world scenarios is the 
long-term estimation of 7-day moving average power 
generation throughout the whole year.
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