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Air quality is of growing concern globally due to its impact on human health. One of the most important air pol-
lutants is particulate matter, principally fine particulate matter (PM 2.5). This study was carried out in the city of 
Osorno, Chile, where high levels of PM 2.5 are recorded, specifically during autumn and winter. A large database 
was assembled of daily PM 2.5 concentrations, precipitations, ambient temperature and mean wind speed in 
the months of April to September from 2013 to 2023. Using a discrete Markov chain model, the evolution and 
projection of PM 2.5 concentrations associated with existing weather conditions (environmental variables) were 
analysed. The analysis showed that the combination of low PM 2.5 concentration, cold temperature, presence 
of precipitations and wind is the commonest and most stable state, while states with high PM 2.5 concentra-
tion are more probable when conditions of cold temperature without rain or wind occur. The transition matrix 
drawn up enabled us to identify patterns of change and recurrence, showing the importance of weather factors 
in the accumulation or dispersal of pollutants and the associated probabilities. For example, state 24 (Very high  
PM2.5 – Cold – No rain – No wind), considered an “emergency” level in Chile, has an average recurrence time of 
18.875 days and a 14.29% probability of transitioning to state 3 (Low PM2.5 – Cold – With rain – With wind), which 
in turn has a 17.662% of self-transition probability. The results provide a basis from which to project air quality 
conditions and plan preventive measures. 
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Introduction 
Air quality and its effects on public health constitute 
a very important global problem. From the air that 
we breathe in our cities to that which we share in our 
homes, air pollution presents critical challenges for 

human beings and is a major world health problem. 
The principal sources of pollution in ambient air are 
vehicle traffic, factories and domestic fuels (Zhou et al., 
2024). This is moreover a problem that affects every-
one, since approximately 99% of people breathe air 
containing significant pollutants at higher levels than 
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the maximum recommended by the WHO (Azimi and 
Rahman, 2024). 

Air pollution consists of a number of components. This 
article considers coarse and fine particulate matter 
which differ, among their other characteristics, in that 
coarse particles are eliminated relatively quickly from 
the atmosphere by the effects of gravity and other pro-
cesses, while fine particles remain in the air for longer 
and can drift from one area to another (Munir, 2017). 
These minute particles, generally invisible to the naked 
eye, have a diameter of 2.5 µm or less; they are known 
as Particulate Matter 2.5 (PM 2.5), and constitute a key 
indicator of air quality. Because they are so fine, PM 2.5 
may remain suspended in the air for hours, and can en-
ter the bloodstream directly, where they have an im-
pact on health (Ho and Lin, 2024). Various studies have 
confirmed that PM 2.5 not only damages the respiratory 
and cardiovascular systems, but also causes symptoms 
such as diabetes and cancer (Ho and Lin, 2024). Studies 
have shown a strong relation between PM 2.5 particle 
pollution and lung cancer (Fei et al., 2024). Strong ev-
idence also exists of a relation between increased PM 
2.5 exposure and higher risk of autism spectrum disor-
der (ASD) (Jin et al., 2024). In Chile, positive correlations 
have been observed between environmental particle 
levels, mortality, hospital admissions and acute res-
piratory infections due to cardiovascular and respiratory 
diseases (Nakamura et al., 2022). These are just some 
of the problems caused by particle pollution.

Previous investigations have shown that a variety of 
meteorological factors, such as temperature, relative 
humidity and wind speed (Nakamura et al., 2022), play 
a significant role in the concentrations of air pollutants. 
As weather factors may have a direct impact on the 
time that pollutants remain suspended, as well as on 
the direct causes of particle pollution, it should be noted 
that PM 2.5 may consist of many components, and that 
these vary depending on their origin. In southern Chile, 
for example, the principal component of fine particles is 
organic matter, accounting for more than 70% of PM 2.5 
(Jorquera et al., 2021). There are also estimates sug-
gesting that residential combustion may account for up 
to 40% of the environmental PM 2.5 in some low- and 
medium-income countries (Odo et al., 2023). 

Vieira de Oliveira Salerno et al. note the high rates of 
exposure to PM 2.5 in the whole of South America (Vie-
ira de Oliveira Salerno et al., 2023), while Carreño et al. 

indicate that several of the most polluted cities in South 
America are located in Chile (Carreño et al., 2022).

Firewood burning is the primary source of PM2.5 pol-
lution in southern Chilean cities, responsible for 84.6% 
of emissions, followed by inorganic particles (4.8%) and 
coal combustion (4.4%) in cities like Temuco, which has 
similar conditions to Osorno (Villalobos et al., 2017). 
Air pollution also causes serious health impacts in the 
population. As a result, depending on the sector, restric-
tions are applied to emission sources when the mean 
emissions of PM 2.5 in a 24-hour period exceed 80 μg/
m3 (Perez and Gramsch, 2016). The study of Nakamura 
et al. (2022), which showed the characteristics of PM 2.5 
pollution in Osorno, observed the times of day when the 
concentration of particulate matter was highest, detect-
ing large peaks of PM 2.5 concentration between 19:00 
and the 23:00 (local time), and two small peaks between 
07:00 and 12:00. These peaks occurred during the pe-
riod when many of the local population are engaged in 
domestic activities (Nakamura et al., 2022). The Atmos-
pheric Decontamination Plan for Osorno (PDAO), active 
from April to September, and which depends on the Min-
isterio del Medio Ambiente (MMA), imposes restrictions 
during pre-emergency or emergency episodes, including 
limits on residential firewood heaters, industrial boilers, 
and use of multiple firewood devices (MMA, 2024)

The city of Osorno has the third highest PM 2.5 pollu-
tion levels in Chile, with an annual average of 30 µg/m3 

in 2023. The two highest were Coyhaique with  
38 μg/m3 and Padre Las Casas with 33 μg/m3 (Fernán-
dez et al., 2024). Osorno also ranks as number 52 for 
air pollution in South America (IQAir, 2024). 

Given that PM 2.5 depends on various weather factors, 
its concentration changes frequently. Because these 
changes tend to occur unexpectedly, investigators ap-
ply stochastic mathematical models to analyse them 
(Caraka et al., 2019). Markov chains are stochastic 
mathematical models which can model random phe-
nomena that evolve over time, allowing the future state 
of a system to be predicted based on its current state 
and a transition probability matrix. Markov models are 
based on a few, non-restrictive hypotheses, and can 
be calibrated and applied to a database containing a 
set of data such as is normally available in practice, 
for example a set of particulate matter concentrations 
(Carpinone et al., 2015). The future condition of the sys-
tem is completely determined by its current state and 
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not by the sequence of events which led to that state. 
This property, known as “no memory” (or “memoryl-
ess”), allows simple results to be obtained by calculat-
ing probabilities and other indicators of interest (Batún 
et al., 2023). Some examples of research applying 
discrete-time Markov chains to the study of pollution 
include: a) the study of air and noise pollution in Oyo 
State (Nigeria) (Ogunlade et al., 2024),b) the analysis of 
air quality indices, such as Ontario’s Air Quality Health 
Index (AQHI), which incorporates pollutants such as 
ozone, nitrogen dioxide, and fine particulate matter 
(Holmes and Hassini, 2021), c) predicting the Air Quali-
ty Index (AQI) and identifying major air pollutants such 
as O3, NO2, and PM10 in Taipei (Chen and Wu, 2020), 
d) forecasting the Air Pollution Index (API) in Miri, Sar-
awak (Zakaria et al., 2019), e) the study the persistence 
of polluted days with carbon monoxide(Rahimi et al., 
2011), f) the analysis of air quality levels(Yousefi Kebri-
ya and Nadi, 2024), among others. Based on the above, 
the object of this work was to determine the probability 
of the occurrence of high levels of PM 2.5 in the city 
of Osorno under different weather conditions – spe-
cifically wind speed, ambient temperature and quan-
tity of precipitations – by means of a discrete Markov 
chain model. In this way we expect to be able to provide 
timely information to support the authorities in taking 
proper decisions, and thus planning interventions to 
improve the air quality in the city. 

Methods

Procedure
Markov chains are a widely-used tool for analysing 
stochastic processes. In analysing environmental data, 
such as predictions of PM 2.5 concentrations, certain 
assumptions must be made on the distribution of the 
variables involved. A discrete time stochastic process is 
therefore considered to be a collection of random var-
iables Xt, where the t index adopts values from a given 
T, and corresponds to a set of non-negative integers  
(t = 0,1,2…). Each random variable Xt represents a 
characteristic of interest that is quantifiable in time t. 
A stochastic process is a Markov chain if it is memo-
ryless.

A Xt stochastic process is Markovian, or memoryless, 
if the conditional probability of any future event, given 
the current state and any past event, is independent of 

past events and only depends on the current state of 
the process. It is described as Markovian if for t = 0,1,…, 
and the whole succession i, j, k0, k1,…,kt – 1. (Batún et 
al., 2023):
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to be stationary. This implies that for each i and j:  
P(Xt + 1 = j | Xt = i) = P(X1 = j | X0 = i), for any t = 1, 2, ….  
Then for probabilities of transition of n steps:  
P(Xt + n = j | Xt = i) = P(Xn = j | X0 = i), simplifiying the equa-
tion (Batún et al., 2023)  

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀

0
1
⋮
𝑀𝑀𝑀𝑀 ⎣

⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝00

(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(2)

where (1) must meet the following properties:

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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1
⋮
𝑀𝑀𝑀𝑀 ⎣

⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝00

(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(3)

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(4)

The n-step transition matrix is then represented by 
(Batún et al., 2023): 

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝00

(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(5)

Some of the characteristics of this matrix are the 
classes of states that it contains, such as recurrent 
states. A state in a Markov chain is considered recur-
rent if, once the process enters that state, it may return 
to it in the future. If the Markov chain contains only one 
class, i.e. if all the states intercommunicate, it is said 
to be irreducible. On the other hand, a transition ma-
trix of a Markov chain is considered ergodic if all its 
states are aperiodic and recurrent. In simple terms, a 
Markov chain is ergodic when each state of the chain 
is aperiodic, meaning that it does not follow a regular 
pattern of visits over time. In other words, there is no 
fixed number of steps after which the chain inevitably 
returns to the same state. 

To obtain a transition probability 

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
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                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

 in n steps for a 
database in which every combination of data is identi-
fied with a state, the frequency identified in each of the 
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states is identified and the probability of moving from 
an initial state i to a destination state j is calculated 
(Guerry, 2013).

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀

0
1
⋮
𝑀𝑀𝑀𝑀 ⎣

⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝00

(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(6)

where zij (t, t + 1)  represents the number of data in 
state i at moment t which transition to state j at mo-
ment t + 1 (for t = 0,…T – 1 ), and zi (t) refers to the 
number of data in state i at time t.

One of the most important long-term properties of 
Markov chains is the stable state property called πj, 
which presents the probability of terminating in state 
j in a large number of transitions. Only for an irreduc-
ible ergodic matrix, 

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀

0
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𝑀𝑀𝑀𝑀 ⎣

⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝00

(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
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(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
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 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 
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 exists (independent of i). 
The values of πj are obtained by the following system of 
equations formed by the following expressions (Torres 
Delgado et al., 2023): 

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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1
⋮
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⎡𝑝𝑝𝑝𝑝00
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(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
… 𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 
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(7)

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝0𝑀𝑀𝑀𝑀

(𝑛𝑛𝑛𝑛)

𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
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⋮
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(𝑛𝑛𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
 (5) 11 

                                                    12 
Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 
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(8)

The expected first passage time is a statistical measure 
which tells us the mean time taken to transition from one 
state to another in a Markov chain for the first time. Where 
µij represents the expected first passage time from a state 
i to a state j, expressed below (Afzal et al., 2019):

 

3 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡+𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑗𝑗|𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖) (2) 1 

                                                                                                                                    2 
where (1) must meet the following properties: 3 
 4 
     𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) ≥ 0,         ∀ 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯ (3)                                                       5 
 6 

∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 = 1,           ∀  𝑖𝑖𝑖𝑖 ; 𝑛𝑛𝑛𝑛 = 0, 1, 2, ⋯    (4)                                                   7 
 8 

The 𝑛𝑛𝑛𝑛-step transition matrix is then represented by (Batún et al., 2023):  9 
 10 

𝑝𝑝𝑝𝑝(𝑛𝑛𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆  0      1  …  𝑀𝑀𝑀𝑀
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1
⋮
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(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝01
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𝑝𝑝𝑝𝑝10
(𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝11

(𝑛𝑛𝑛𝑛) … 𝑝𝑝𝑝𝑝1𝑀𝑀𝑀𝑀
(𝑛𝑛𝑛𝑛)

⋮
𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀0

(𝑛𝑛𝑛𝑛)
⋮

𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀1
(𝑛𝑛𝑛𝑛)

⋱     ⋮
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⎥
⎥
⎥
⎤
 (5) 11 
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Some of the characteristics of this matrix are the classes of states that it contains, such as recurrent states. A 13 

state in a Markov chain is considered recurrent if, once the process enters that state, it may return to it in the future. 14 
If the Markov chain contains only one class, i.e. if all the states intercommunicate, it is said to be irreducible. On 15 
the other hand, a transition matrix of a Markov chain is considered ergodic if all its states are aperiodic and 16 
recurrent. In simple terms, a Markov chain is ergodic when each state of the chain is aperiodic, meaning that it 17 
does not follow a regular pattern of visits over time. In other words, there is no fixed number of steps after which 18 
the chain inevitably returns to the same state.  19 

To obtain a transition probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) in 𝑛𝑛𝑛𝑛 steps for a database in which every combination of data is 20 

identified with a state, the frequency identified in each of the states is identified and the probability of moving 21 
from an initial state 𝑖𝑖𝑖𝑖 to a destination state 𝑗𝑗𝑗𝑗 is calculated (Guerry, 2013). 22 

 23 
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) 24 
 25 

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑡𝑡𝑡𝑡+1)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0
∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)𝑇𝑇𝑇𝑇−1
𝑡𝑡𝑡𝑡=0

  (6) 26 
 27 
where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡 + 1)  represents the number of data in state 𝑖𝑖𝑖𝑖 at moment 𝑡𝑡𝑡𝑡 which transition to state 𝑗𝑗𝑗𝑗 at moment 28 

𝑡𝑡𝑡𝑡 + 1 (for  𝑡𝑡𝑡𝑡 = 0, …𝑇𝑇𝑇𝑇 − 1 ), and 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) refers to the number of data in state 𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡. 29 
One of the most important long-term properties of Markov chains is the stable state property called 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖, which 30 
presents the probability of terminating in state 𝑗𝑗𝑗𝑗 in a large number of transitions. Only for an irreducible ergodic 31 
matrix, lim

𝑛𝑛𝑛𝑛→∞
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛𝑛𝑛) exists (independent of 𝑖𝑖𝑖𝑖). The values of 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖   are obtained by the following system of equations 32 
formed by the following expressions (Torres Delgado et al., 2023):  33 
 34 
lim
𝑛𝑛𝑛𝑛→∞

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛𝑛𝑛) 35 

 36 
𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=0 ,    ∀ 𝑗𝑗𝑗𝑗{0, … ,𝑀𝑀𝑀𝑀} (7) 37 
 38 
∑ 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=0 = 1 (8) 39 

 40 
The expected first passage time is a statistical measure which tells us the mean time taken to transition from 41 

one state to another in a Markov chain for the first time. Where 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the expected first passage time from 42 
a state 𝑖𝑖𝑖𝑖 to a state 𝑗𝑗𝑗𝑗, expressed below (Afzal et al., 2019): 43 
 44 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 + ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖  (9) 45 
 46 

The expected recurrence time refers to the mean time taken to return to a specific state after leaving it. If the 47 
initial state and the destination state are the same, the expected first passage time becomes the expected recurrence 48 
time for that state. 49 

 50 
Data collection 51 

 52 

(9)

The expected recurrence time refers to the mean time 
taken to return to a specific state after leaving it. If the 
initial state and the destination state are the same, the 
expected first passage time becomes the expected re-
currence time for that state.

Data collection
To carry out the study and calculate the probabilities of 
the Markov chain, environmental data were compiled 
from the city of Osorno, Chile. Daily concentrations of 
particulate matter (µg/m3) in Osorno were obtained. 
These data were provided by National Air Quality Infor-
mation System (SIMCA, 2023), a platform that offers vali-
dated, standardised data on air quality in different regions 
of Chile. We also compiled the daily records of precipi-
tation in millimetres (mm), mean daily temperatures in 
degrees Celsius (°C) and the daily wind speed (km/h), re-
gardless of direction. These characteristics were selected 

based on their established relationship with pollution lev-
els, as identified in the study by Nakamura et al. (2022). 
The data for precipitation, temperature and wind speed 
were obtained from Cañal Bajo aerodrome at Osorno 
(the only monitoring station), which maintains precise 
daily measurements (DMC, 2023). 

Data for the years 2013 to 2023 (11 years) were includ-
ed, taken during the autumn and winter (1 April to 15 
September) since this is considered the critical period 
for PM 2.5 in Osorno (Fernández et al., 2024), main-
ly due to increased firewood use for heating. The data 
collected were reviewed prior to analysis to identify 
possible anomalies or missing data. Where missing or 
anomalous data were found, mean values for the same 
day in the other years were applied. 

The PM 2.5 concentration was classified in four cate-
gories based on the value in microgrammes per cubic 
metre (μg/m3). Values of 0 to 79 μg/m3 were classified 
as “Low level of PM 2.5”, indicating relatively safe lev-
els of air pollution. Values from 80 to 109 μg/m³ were 
considered “Medium level of PM 2.5”, representing a 
moderate increase in pollution. In Chile this concen-
tration is defined as the “Alert” level. Values of 110 to  
169 μg/m³ were classified as “High level of PM 2.5”, 
indicating a worrying state of air quality that could af-
fect human health. In Chile this concentration is de-
fined as the “Pre-emergency” level. Finally, any value of  
170 μg/m3 or more was classified as “Very high level of 
PM 2.5”, indicating severe pollution; this is defined as 
an “Emergency” level in Chile (MMA, 2011).

The precipitation was classified in two categories: 
“Rain” and “No Rain”, based on the precipitation meas-
ured in millimetres (mm) per day. A value greater than 
1 mm was treated as “Rain”, indicating significant pre-
cipitation that could influence the dispersion of atmos-
pheric pollutants. A value less than or equal to 1 mm 
was classified as “No Rain” (DGAC, 2021).

The daily temperature was classified in two categories: 
“Cold” and “Warm”. Temperatures lower than 10°C were 
classified as “Cold”. This condition may affect the dis-
persal of pollutants or the accumulation of particulate 
matter because of the methods used by the inhabitants 
to heat their homes (Odo et al., 2023), since firewood 
is the preferred fuel because of its low cost (Navar-
ro-Espinosa and Thomas-Galán, 2023). Temperatures 
higher than 10°C were classified as “Warm”. This is also 
relevant since higher temperatures increase the con-
centration of particulate matter (Pateraki et al., 2012). 
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The approximate daily wind speed was classified in two 
categories: “No Wind” and “Wind”. Wind speeds lower than 
6 km/h were classified as “No Wind”, since this condition 
can affect the dispersal of pollutants by allowing PM 2.5 
to accumulate in the atmosphere. Wind speeds great-
er than or equal to 6 km/h were classified as “Wind”, a 
condition more favourable to the dispersal of pollutants, 
reducing concentrations of particulate matter.

The categories of the variables used in the definition of 
states differ from those used in other studies.

Results and discussion
To implement the Markov chain model, states were 
defined as combinations of these four categories: PM 
2.5 concentration, precipitation, temperature and wind 
speed. This generated a total of 32 states, as shown in 
Table 1.

A preliminary review of high-concentration data during 
selected months is shown in Fig. 1.

State PM2.5/Temperature/Precipitation/Wind State PM2.5/Temperature/Precipitation/Wind

0 Low – Cold – No rain – No wind 16 High – Cold – No rain – No wind

1 Low – Cold – No rain – Wind 17 High – Cold – No rain – Wind

2 Low – Cold – Rain – No wind 18 High – Cold – Rain – No wind

3 Low – Cold – Rain – Wind 19 High – Cold – Rain – Wind

4 Low – Warm – No rain – No wind 20 High – Warm – No rain – No wind

5 Low – Warm – No rain – Wind 21 High – Warm – No rain – Wind

6 Low – Warm – Rain – No wind 22 High – Warm – Rain – No wind

7 Low – Warm – Rain – Wind 23 High – Warm – Rain – Wind

8 Medium – Cold – No rain – No wind 24 Very high – Cold – No rain – No wind

9 Medium – Cold – No rain – Wind 25 Very high – Cold – No rain – Wind

10 Medium – Cold – Rain – No wind 26 Very high – Cold – Rain – No wind

11 Medium – Cold – Rain – Wind 27 Very high – Cold – Rain – Wind

12 Medium – Warm – No rain – No wind 28 Very high – Warm – No rain – No wind

13 Medium – Warm – No rain – Wind 29 Very high – Warm – No rain – Wind

14 Medium – Warm – Rain – No wind 30 Very high – Warm – Rain – No wind

15 Medium – Warm – Rain – Wind 31 Very high – Warm – Rain – Wind

Table 1. Definition of states in relation to PM2.5 and weather conditions
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Fig. 1. Frequency of days with high pollution in different months of each year 2 
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From Fig. 1, it is evident that the frequency of high PM2.5 concentrations tends to decline as the summer 4 

months approach (from January to April and from September to December). This pattern aligns with the findings 5 
of Molina et al. (2017), therefore, these months were excluded from the analysis. 6 

The historical data of the variables were used to calculate the frequencies of transitions between the different 7 
states, thus obtaining the transition probabilities. The transition matrix was constructed with the transition 8 
probabilities obtained in this way. The Python code used for the calculations, based on the equations presented in 9 
the Methods / Procedures section, is available at the following link: 10 
https://github.com/ParticulateMatterOsorno/Markov-chain/blob/main/Python%20code.PY 11 

Fig. 2 presents a bubble chart showing the occurrence of each state, with the X-axis representing the current 12 
state and the Y-axis the state on the following day.    13 
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From Fig. 1, it is evident that the frequency of high 
PM2.5 concentrations tends to decline as the sum-
mer months approach (from January to April and from 
September to December). This pattern aligns with the 
findings of Molina et al. (2017), therefore, these months 
were excluded from the analysis.

The historical data of the variables were used to calcu-
late the frequencies of transitions between the differ-
ent states, thus obtaining the transition probabilities. 
The transition matrix was constructed with the tran-
sition probabilities obtained in this way. The Python 
code used for the calculations, based on the equa-
tions presented in the Methods / Procedures section, 
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is available at the following link: https://github.com/
ParticulateMatterOsorno/Markov-chain/blob/main/
Python%20code.PY

Fig. 2 presents a bubble chart showing the occurrence 
of each state, with the X-axis representing the current 
state and the Y-axis the state on the following day.   

There are no data for states 14, 29, 30 and 31 in the 
study case, meaning that these states did not occur 
during the observation period, or are extremely rare. 
This may be due to the nature of the data set collected 
or to the geographical area, in which certain specific 
weather conditions do not occur. These states were 
therefore eliminated from the matrix.

Fig. 2. Frequency of transitions in different states

Fig. 3 shows the resulting matrix, with probabilities 
calculated to three decimal places.

Some transitions are seen to have a high probability, 
meaning that certain combinations of PM 2.5 concen-
tration and weather conditions are more common than 
others. This shows how the air quality and weather 
conditions may evolve in specific scenarios. 

We observe that some states have a high probability 
of persisting for a period of days. For example, State 
3 (Low level of PM 2.5 - Cold - Rain - Wind) shows a 
high probability (34.97%) of remaining unchanged. This 
high probability implies that these conditions of air 
quality and weather are relatively stable and tend to 
persist once they occur. Similarly, State 7 (Low level of  

https://github.com/ParticulateMatterOsorno/Markov-chain/blob/main/Python%20code.PY
https://github.com/ParticulateMatterOsorno/Markov-chain/blob/main/Python%20code.PY
https://github.com/ParticulateMatterOsorno/Markov-chain/blob/main/Python%20code.PY
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PM 2.5 - Warm - Rain - Wind) also shows a high prob-
ability (39.11%) of remaining unchanged. This indicates 
considerable stability in conditions of this kind, reflect-
ing weather patterns encountered in Osorno.

Another important result is the existence of certain 
transitions with a probability that is very low or close 
to zero. These unlikely transitions are found in certain 
combinations of PM 2.5 levels with weather conditions 
that are unusual or improbable for the system mod-
elled. For example, states with high or very high levels 
of PM 2.5 with rain and wind are unlikely to occur. There 
are also states with a low probability of persisting. For 
example, there are several states along the diagonal of 
the matrix with 0% possibility of persisting, suggest-
ing great instability and a significant tendency to transit 
rapidly to another state.

Among the states with Very high levels of PM 2.5, 
State 24 (Very high level of PM 2.5 - Cold - No Rain -  
No Wind) presents 24.49% probability of remaining un-
changed, indicating high persistence of this combina-
tion of pollution and weather conditions. This situation 
is completely different to the other states with Very 
high levels of PM 2.5, since they present 0% probabili-
ty of remaining unchanged. State 24 is also interesting 
in that it presents several probabilities of transition to 
another state. The most representative case is the pos-
sibility of transiting from State 24 to State 3 (Low level 
of PM 2.5 - Cold - Rain - Wind), with a probability of 
14.29%; this is indicative of the strong impact of wind 

and rain on particulate matter levels. An important fea-
ture of the PM 2.5 concentration and weather condi-
tions defined in State 24 is the fact that it is the most 
frequent combination that gives rise to the definition 
of the air quality situation classed as an “Emergency” 
under Chilean law. The transition matrix indicates the 
probability of this condition persisting or changing. 

According to the order of the matrix results shown in 
Fig. 3, it can be seen that the highest concentration of 
probabilities for transition, other than zero, occur in the 
states that include a low level of PM 2.5, followed, to 
a lesser degree, by states with medium PM 2.5 levels.

The figure also shows which states have a tendency 
to transition to a high concentration of PM 2.5; for ex-
ample, changes in this direction are more frequent in 
States 16 and 24 than in other states with equivalent 
levels of PM 2.5. We likewise see an increase in PM 2.5 
with cold mean temperature and no rain or wind; while 
in states with similar conditions but a warmer temper-
ature, the probabilities of transition are considerably 
lower. This is because, although higher temperatures 
increase the concentration of pollutants in the air, the 
intensive use of polluting domestic heating devices in 
cold weather has a greater impact on pollution levels. 

The probability information determined in the matrix of 
Fig. 3 allows us to establish the probability of a station-
ary state for each state defined, as well as the recur-
rence time. This information is shown in Table 2.
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Table 2. Steady state probabilities and recurrence times of the defined states

States 0 1 2 3 4 5 6

πj (%) 8.71 11.211 3.791 17.662 5.235 7.467 2.269

μii (days) 11.482 8.92 26.378 5.662 19.102 13.392 44.066

States 7 8 9 10 11 12 13

πj (%) 14.742 4.061 2.6 1.679 1.733 0.865 0.487

μii (days) 6.784 24.627 38.468 59.574 57.711 115.614 205.24

States 15 16 17 18 19 20 21

πj (%) 0.379 6.118 1.896 0.921 0.867 0.486 0.271

μii (days) 263.726 16.345 52.742 108.603 115.389 205.554 369.097

States 22 23 24 25 26 27 28

πj (%) 0.108 0.163 5.306 0.379 0.325 0.163 0.108

μii (days) 923.94 613.717 18.847 263.785 307.783 614.632 929.403

According to Table 2, State 3 (Low level of PM 2.5 - Cold -  
Rain - Wind) is the most likely to occur (probability 
17.66%), indicating that this is the commonest (most 
probable) state in the long term. It is followed by 
State 7 (Low level of PM 2.5 - Warm - Rain - Wind) 
with a probability of 14.74%. States with a lower prob-
ability of occurrence include State 22 (High level of  
PM 2.5 - Warm - Rain - Wind) and 28 (Very high level 
of PM 2.5 - Warm - Rain - Wind) with only 0.11% each. 
These states are therefore extremely rare.

In parallel, the expected recurrence times show that, 
on average, State 3 recurs after only 5.66 days. On the 
other hand, states with a low probability, such as State 
22 and State 28, present very high recurrence times, of 
923.94 and 929.40 days respectively.

The transition matrix was developed using data from 
the city of Osorno, and is therefore valid in this con-
text. However, the defined states, variables used, and 
the processing mechanism are replicable for other ge-
ographical areas in the country, potentially generating 
valuable information in those contexts.

Using the transition matrix and the stationary states, 
both short- and long-term predictions can be made 
of the air quality and weather conditions. Thus future 
scenarios can be anticipated and suitable responses 
prepared, improving air quality management. Detailed 
analysis of the transition matrix enables local author-
ities to develop better informed policies and take pre-
ventive or mitigation measures based on the probabil-
ity of the occurrence of states of high pollution. This is 

necessary in order to implement effective strategies to 
protect public health and reduce pollution levels. The 
model also provides a basis for further studies to ad-
just and improve its accuracy. This investigation work 
can contribute to the development of more robust and 
accurate models, further improving air quality predic-
tion and management in Osorno.

Conclusions
The development of a transition matrix based on a 
discrete Markov chain allows us to model the concen-
tration of fine particulate matter (PM 2.5) in the city of 
Osorno. This analysis reveals the patterns of change 
in the combinations of particulate matter 2.5 concen-
tration with daily weather characteristics. Common 
transitions between states were identified, for example 
transition from State 19 to State 24 with a probability of 
18.8%. The analysis also highlighted states with a low 
probability of remaining unchanged, reflecting the high 
instability of certain combinations of PM 2.5 and weath-
er variables. This knowledge can add value to current 
tools used for applying measures under the Osorno Air 
Decontamination Plan (PDAO). These findings are im-
portant for identifying when and how large variations 
in the PM 2.5 concentration may occur, thus provid-
ing basic information for the implementation of more 
targeted and proactive mitigation strategies. Further-
more, identifying states with higher particulate matter 
2.5 levels, and the probabilities of these changing or 
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persisting, provides information on which to base the 
design of preventive actions that could reduce pollution 
without eliminating the community’s primary heating 
method. 

By defining states based on combinations of the PM 
2.5 concentration with specific weather factors, it is 
possible to analyse air quality at a given moment and 
show the probabilities that air pollution will get better 
or worse, associated with predicted changes in the 
weather.

In the social context, specifically for people living in 
Osorno, this model offers an opportunity to develop 

better-informed policies and apply preventive meas-
ures based on the probability that states of high pol-
lution will occur. This is essential for protecting public 
health and reducing pollution levels in the city
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