
134 Environmental Research, Engineering and Management          2025/81/3

The Study of Groundwater 
Salinization Mechanisms: A 
Case study of the Remila Basin, 
Northeastern Algeria

EREM 81/3
Journal of Environmental Research, 
Engineering and Management
Vol. 81 / No. 3 / 2025
pp. 134–146
10.5755/j01.erem.81.3.40964

The Study of Groundwater Salinization Mechanisms: A Case study of the 
Remila Basin, Northeastern Algeria

Received 2025/05 Accepted after revisions 2025/08

https://doi.org/10.5755/j01.erem.81.3.40964

Rima Kebbach1, Mahrez Boulabeiz2, Sedrati Abdenour1*, Belgacem Houha1

1  Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Algeria
2  Abbes Laghrour University, Algeria

*Corresponding author: sedrati.abdenour@univ-khenchela.dz

This study provides a thorough hydrogeochemical analysis of the Remila basin in northeastern Algeria, address-
ing critical water resource issues. The groundwater exhibits diverse chemical facies, mainly calcium-sulfate (Ca-
SO₄) and calcium-bicarbonate (Ca-HCO₃) types, reflecting complex geology and water-rock interactions. Ground-
water mineralization is primarily driven by evaporitic mineral dissolution, such as gypsum and halite, with strong 
correlations between electrical conductivity and major ions. Ion exchange processes, indicated by Na⁺/Cl⁻ ratios 
and relationships between calcium, magnesium, and sodium, significantly influence groundwater chemistry. Ele-
vated strontium levels, especially in rapid runoff areas, suggest an influence of evaporitic formations and celestite 
dissolution, supported by Sr²⁺/Ca²⁺ ratios exceeding 1%. Lithium concentrations indicate prolonged water-rock 
interactions and deep aquifer systems. Principal component analysis (PCA) reveals that natural salinization pro-
cesses primarily driven by the dissolution of evaporitic minerals account for 44.65% of the total variance (PC1), 
while anthropogenic pollution, particularly nitrate contamination from agricultural sources, contributes 13.73% 
(PC2). Groundwater is generally undersaturated with major minerals, indicating ongoing dissolution processes, 
and spatial variations in water quality parameters emphasize the combined influence of geological factors and 
anthropogenic activities on the aquifer system.
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Introduction
Water scarcity is becoming an increasingly critical glob-
al challenge particularly in developing countries, where 
the quantity and quality of available water resources 

pose increasingly complex challenges (Fletcher et 
al., 2013). As highlighted by the United Nations, water 
scarcity affects more than 40% of the global population, 
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with projections indicating that this number will con-
tinue to rise due to climate change and unsustainable 
water management practices (Berkani et al., 2023). 
Groundwater, a vital resource worldwide, is threatened 
by various point and non-point sources of contamina-
tion, presenting significant environmental and public 
health risks (Rina et al., 2013). In semi-arid regions, 
the sustainability of groundwater resources is further 
compromised by a complex interplay of climatic and 
anthropogenic factors. Population growth, the expan-
sion of irrigated agriculture, and climate change col-
lectively contribute to a substantial increase in water 
demand, placing unprecedented pressure on already 
limited water resources (Masoud et al., 2018). 

Researchers such as Gleeson et al., 2012; Aouidane et 
al., 2017 have demonstrated that groundwater deple-
tion is becoming a critical global issue, with many re-
gions experiencing unsustainable extraction rates that 
exceed natural recharge. Declining groundwater qual-
ity in semi-arid regions presents a significant future 
challenge for effective water resource management 
(Berkani et al., 2023). Studies by Stigter et al., 2006; 
Houha et al., 2008 have shown that these regions are 
especially vulnerable to environmental changes, with 
groundwater systems experiencing significant altera-
tions in chemical composition and recharge patterns. 
Climate change exacerbates these challenges, lead-
ing to more frequent and severe droughts that further 
stress these fragile water resources (Rosen and Jones, 
1998). This study aims to address the critical challeng-
es of groundwater quality degradation in the Rémila 
basin, a semi-arid region located in northeastern Al-
geria that is increasingly vulnerable to water scarcity 
and salinization. By focusing specifically on this basin, 
which plays a key role in supporting local agricultural 
and domestic needs, the research conducts a detailed 
hydrogeochemical assessment to identify the main 
factors driving groundwater mineralization. Through 
the integration of chemical analyses and multivariate 
statistical techniques, the study seeks to disentangle 
the natural and anthropogenic processes such as water 
rock interaction, ion exchange, and agricultural return 
flows—that influence groundwater composition in the 
Remila basin. The findings aim to inform more targeted 
and effective water management strategies tailored to 
the specific hydrogeological and socio-environmental 
conditions of the basin, thereby contributing to sustain-
able resource planning in similar semi-arid contexts.

Material and methods

Study a rea 
The study area, situated in the northeastern region 
of Algeria, is a subwatershed of Garaat Et Tarf basin 
located between the Tell Atlas and the Saharan Atlas 
(Aures massif), spanning approximately 250 square 
kilometers of relatively flat terrain between 35°25’-
35°40’N and 06°30’-07°05’E, with elevations ranging 
from 800 to 1000 meters above sea level. This Rémila 
basin features an endoreic depression known as the 
Sebkha of Garâat-Et-Tarf, covering 200 km², and is 
bounded by Djebel Bou-Arif (1450m) and Djebel Am-
rane (1000m) to the west, Djebel Fedjoudj (1248m) 
to the north, the salt depression of Garâat-Et-Tarf 
to the east, and the Cretaceous reliefs of the Aurès 
to the south, including Djebels Aidel (1300m), Aures 
(1600 m), and Chelia (2308 m), while experiencing a 
semi-arid climate characterized by average annual 
rainfall of 400 mm/year and an average annual tem-
perature of 16°C.

Geology 
The study area’s geology (Fig. 2) is characterized by di-
verse formations across different periods. Triassic out-
crops appear in Khenchela, specifically at Djebel Aidel 
in Hammam Essalihine and Djebel Elkrouma in Ham-
mam El-Knif. The Lower Cretaceous is represented by 
marly and compact limestones that are cracked and 
karstified, while the Albian stage, present in the Aurès 
anticlines, exhibits sandy, marly, and dolomitic facies. 
In the southern basin, Albian outcrops at Djebel-Aidel 
consist of thick dolomitic limestones, sourcing the Ain 
El-Kerma spring. 

These carbonate formations are overlain by gypseous 
red clay, which unconformably rests on the Lower Cre-
taceous (Laffitte 1939; C.G.G. 1969). The recent Qua-
ternary deposits form a multi-layered aquifer system, 
comprising alternating layers of conglomerates, sand, 
gravel, and clay, which hosts two distinct aquifers: a 
deep conglomerate layer and a superficial sand and 
gravel layer (Houha et al., 2008).

Sample collection 
During a sampling campaign conducted in May 2018, 
54 water samples (Fig. 3) were collected from the 
Rémila basin. 
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Fig. 1. Location of study area (Remila plain)
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The study employed a Consort C931 multi-parameter ana-
lyzer (version 2.4) for in situ measurements of tempera-
ture, electrical conductivity, and pH. This instrument is a 
versatile benchtop/portable device capable of measuring 
multiple parameters simultaneously. For the analysis of 
major elements and trace elements (Sr2+ and Li+), flame 
spectrophotometry was utilized. This technique, also 
known as flame photometry, is particularly well-suited for 
measuring alkali and alkaline earth metals.

Results and Discussion

Physical parameters
The temperature of groundwater in the study area 
ranges from 17°C to 24°C, with an average tempera-
ture of 19.76°C. The highest temperatures are associat-
ed with waters from the Cretaceous aquifer, indicating 
the influence of geothermal gradients in these deeper 
geological formations. Shallow wells, with depths less 
than 5 meters, are more susceptible to external climat-
ic conditions, showing greater temperature variability 
due to seasonal changes and surface temperature 
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fluctuations (Bouguerra and Douaoui, 2021; Mebarki 
and Hamzaoui, 2018).

Electrical conductivity (EC) of groundwater in the region 
varies significantly, from 700 μS/cm to 3591 μS/cm,  
with an average value of 1461 μS/cm (Fig. 4). This wide 
range of EC values reflects the diverse mineralization 
levels and ionic concentrations in the groundwater. The 
spatial variation of EC across the Remila plain aligns 
closely with both lithological and anthropogenic pat-
terns. Zones of elevated EC correspond to geological 
sectors dominated by evaporitic formations, particu-
larly Triassic and Quaternary units rich in gypsum and 
halite (Djezzar and Laid, 2015). Simultaneously, areas 
under intensive agriculture show elevated EC values, 
suggesting an additive role of irrigation return flows in 
increasing salinity. The pH of groundwater in the study 
area exhibits a range from 6.5 to 7.91, with an average 
value of 6.94. This variation in pH indicates that the 
groundwater is generally slightly acidic to near-neutral. 
Such pH levels can be influenced by various factors, in-
cluding the geological composition of the aquifers, the 
presence of dissolved gases and minerals, and potential 
contamination sources (Mebarki and Hamzaoui, 2018).
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Descriptive analysis
Performing a descriptive statistical analysis of data is 
crucial in any statistical evaluation (see Table 1) (Hosseini 
et al., 2014; Yang et al., 2011; Aouidane et al., 2021). The 
most critical metric for describing the variability of wa-
ter parameter values is the variance coefficient (VC). This 
statistical measure quantifies the extent of variation in 

Fig. 4. Electric conductivity spatial distribution in Remila plain (IDW interpolation)
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relation to the mean of the data set, making it particularly 
useful for comparing variability across different param-
eters with diverse units and scales. High VC values indi-
cate significant variability, suggesting that certain water 
quality parameters fluctuate considerably, potentially 
due to natural processes or anthropogenic influences.

Table 1. Descriptive statistics of physicochemical parameters

A low coefficient of variation (CV) for pH and temperature, 
both less than 10%, suggests minimal spatial variability 
in these parameters across the study area. This indicates 
a relatively uniform distribution, likely influenced by sta-
ble environmental conditions. In contrast, bicarbonate 

(HCO₃⁻), EC, calcium (Ca²⁺), sodium (Na⁺), strontium (Sr), 
and lithium (Li) exhibit moderate CVs ranging from 20% 
to 50%. This indicates a moderate spatial distribution, 
which may be attributed to variations in geological for-
mations and localized sources of these elements.
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On the other hand, magnesium (Mg²⁺), potassium (K⁺), 
sulfate (SO₄²⁻), and nitrate (NO₃⁻) demonstrate high CVs, 
indicating significant spatial variability within the study 
area. The elevated variability in these parameters sug-
gests that both natural factors, such as mineral disso-
lution and geological heterogeneity, and anthropogenic 
influences. Agricultural practices and human activities 
have a clear impact on groundwater quality. In farm-
ing areas, fertilizers and irrigation water seep into the 
ground, raising nitrate, magnesium, and potassium lev-
els. Wastewater from homes or small industries can also 
add pollutants like nitrate and sulfate. These human-driv-
en sources, combined with natural factors, create notice-
able differences in water quality across the region.

Chemical facies
The analysis of Piper diagram (Fig. 6) reveals several 
distinct hydrochemical facies, primarily dominated by 
calcium (Ca²⁺), magnesium (Mg²⁺), and sulfate (SO₄²⁻) 
ions. The major water type identified is the Ca-SO4 fa-
cies (61.4 %), which is particularly evident in samples 
with higher EC values, suggesting significant interac-
tion with gypsum or anhydrite-bearing formations. A 
secondary but important facies is the Ca-HCO3 type 

(24.56 %), typically found in samples with lower min-
eralization, indicating influence from carbonate rock 
dissolution processes.

Some samples exhibit a mixed Ca-Mg-SO₄ character 
(5.26 %), particularly noticeable in the central portion 
of your dataset, pointing to the influence of both car-
bonate and evaporite mineral dissolution. The presence 
of elevated sodium (Na⁺) in certain samples suggests 
a minor but notable Na-mixed facies, possibly result-
ing from ion exchange processes or the weathering of 
sodium-bearing minerals. The generally moderate to 
high sulfate concentrations across many samples indi-
cate significant influence from evaporitic formations in 
the aquifer system.

The bicarbonate (HCO₃−) concentrations show moder-
ate to high values throughout the dataset, suggesting 
active carbonate weathering processes. The chloride 
(Cl⁻) concentrations are relatively variable, with some 
samples showing elevated values, possibly indicat-
ing localized sources of chloride or mixing with more 
saline water types. The overall ionic distribution pat-
tern suggests a complex hydrogeochemical evolution, 
likely influenced by multiple geological formations and 
various water-rock interaction processes.
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Origin of chemical elements and mechanisms of 
saline load acquisition
To trace the origin of mineralization in the Remila basin 
groundwater, a primary approach involves examining 
the relationships between major elements (Ca²⁺, Na⁺, 
Mg²⁺, K⁺, Cl⁻, SO₄²⁻, HCO₃⁻) and EC (Fig. 6). The patterns 
indicate a positive correlation between these ions (Ca²⁺, 
Na⁺, Mg²⁺, K⁺, Cl⁻, SO4²⁻) and EC, highlighting their con-
tribution to water mineralization. The coefficient of de-
termination (R²) between EC and Cl⁻ is 0.72, followed 
by SO4²⁻, Na⁺, and Mg²⁺ ions, respectively, confirming 
their significant roles in influencing the groundwater›s 
mineral content.

The study of the sodium-chloride (Fig. 7) (Na-Cl) re-
lationship is an effective method to trace the origin of 
groundwater mineralization. Chloride (Cl⁻), being a con-
served ion that does not participate in water-rock inter-
actions, is a key indicator of water salinity and acts as 
a mixing tracer (Hosseini et al., 2014; Yang et al., 2011).  

Fig. 6. Relationship between the major elements and the electrical conductivity of Remila plain groundwater
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The correlation between Na⁺ and Cl⁻ identifies three 
distinct groups. The first group, where data points align 
with a slope of 1, indicates halite dissolution as a pri-
mary influence. The second group, showing Na⁺/Cl⁻ 
molar ratios less than 1, suggests base exchange re-
actions with clay minerals, where Ca²⁺ and/or Mg²⁺ ions 
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are released in exchange for Na⁺ fixation (Appelo and 
Postma, 2005). This process is clearly illustrated by the 
observed pattern in which the deficiency of Na⁺ is off-
set by an enrichment in Ca²⁺ and Mg²⁺. The third group 
of samples, positioned above the slope line of 1, indi-
cates an excess of Na⁺ relative to Cl⁻. This suggests the 
occurrence of a secondary ion exchange, where Na⁺ is 
released from exchange sites and replaced by Ca²⁺ and 
Mg²⁺ ions (Appelo and Willemsen, 1987). This detailed 
analysis helps elucidate the geochemical processes in-
fluencing groundwater mineralization in the study area.

To further understand groundwater mineralization, we 
analyzed major elements based on chlorides (Fig. 8). 
The positioning of various water samples along the 
freshwater-saltwater mixing line (rainwater-seawater) 
is valuable for identifying additional factors influencing 
saline load. Generally, groundwater in the study area 
shows enrichment in Ca²⁺ and SO4²⁻ and a depletion in 
magnesium (Mg²⁺). The key reactions responsible for 
these changes include Ca²⁺ and Mg²⁺ exchange due to 
interactions between water and carbonate rocks, Na⁺ 
and Ca²⁺ or Na⁺ and Mg²⁺ base exchange, and the re-
duction or dissolution of evaporitic sulfate. The graph-
ical representation of calcium (Ca²⁺) relative to sulfate 
(SO4²⁻) (Fig. 9) helps classify water samples into dis-
tinct groups. One group, where the Ca²⁺/SO4²⁻ ratios are 
close to 1, indicates that these ions are influenced by 
the dissolution of gypsum and/or anhydrite. Another 
group, displaying an excess of Ca²⁺, suggests the pres-
ence of cation exchange processes.

Relationship between major chemical elements 
and origin of mineralization
To clarify the mechanisms of mineralization, we uti-
lized the “Diagram” software to calculate the saturation 
indices of specific minerals. This analysis provides in-
sights into the chemical equilibrium between ground-
water and the minerals in the aquifer matrix during 
water-rock interactions. The groundwater analysis in 
the Remila basin indicates that the water is undersat-
urated with calcite, aragonite, dolomite, gypsum, an-
hydrite, and halite (Fig. 10). Consequently, the water’s 
mineralization primarily results from the dissolution of 
these minerals during water-rock interactions.

Trace elements
The use of trace elements is a highly effective meth-
od for determining the causes of high salinity in 

groundwater (Chuanqiang et al., 2018; Mei et al, 2024) 
Trace elements, which are present in minor concentra-
tions, can provide crucial insights into the geochemical 
processes and sources of contamination affecting wa-
ter quality.

Strontium Sr2 +

Strontium is an alkaline earth metal that naturally  
occurs in the form of SrCO3 and SrSO4 (celestite). Celestite 
is typically associated with evaporitic formations (Hou-
ha et al., 2008). The low concentration of Sr²⁺ (less than 
7 mg/L) is observed in the southern zone, where run-
off occurs exclusively in detrital materials at a relative-
ly slow rate. This slow movement indicates a prolonged 
residence time of water in the medium. Conversely, high 
Sr²⁺ concentrations, reaching up to 17 mg/L, are found 
in areas located in the northwest, northeast, and center 
of the plain, where runoff is relatively rapid. This reflects 
a shorter residence time of water in these zones. The 
elevated strontium levels coincide with the outcrops of 
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evaporitic formations, suggesting that the presence of 
this element is linked to saliferous formations through 
the dissolution of celestite (SrSO4).

Sr2 +/Ca2 + typical ratio
The Sr²⁺/Ca²⁺ ratio is an effective indicator of the evap-
orite origin of high sulfate levels in water (Fidelibus et 
al., 1996; Houha, 2007; Hamed et al., 2014; Mokadem 
et al., 2016). Sr²⁺/Ca²⁺ molar ratios greater than 1‰ 
are typically indicative of gypsiferous water (Meybeck, 
1986). The analysis of the Sr²⁺/Ca²⁺ ratio revealed that 
the majority of water samples have values greater 
than 1‰, reflecting the influence of gypsiferous for-
mations on the presence of strontium. This finding 
aligns with the observed facies types, where wells 

with bicarbonate facies are predominantly located in 
the southern part of the plain and represent a small 
percentage, while wells with sulfate or chloride facies 
occupy the majority of the plain.

Lithium
A slight increase in temperature can significantly ele-
vate the Li⁺ content in groundwater, ranging from 100 
to 10,000 times the original concentration (Fidelibus et 
al., 1996; Barbieri et al., 1998; Fehdi et al., 2009; Hamed, 
2009). In the Remila plain, the Li⁺ concentration in 
groundwater varies between 0.12 and 0.91 mg/L, with 
an average of 0.43 mg/L. This elevated level of lithium 
suggests prolonged water-rock interaction, indicating 
that the groundwater is likely of considerable depth. 
Such prolonged contact allows for more extensive dis-
solution of lithium-bearing minerals, contributing to 
the observed concentrations.

Principal component analysis
Principal component analysis (PCA) of groundwater 
chemical variables is a valuable method for understand-
ing the relationships between variables and the process-
es influencing water quality (Travi and Mudry, 1997; Baali, 
2007; Subba Rao, 2007). The correlation matrix for major 
ions (Fig. 12) reveals key interactions among chemical 
parameters. EC shows strong positive correlations with 
chloride (Cl−), sulfate (SO₄2−), calcium (Ca2+), magnesium 
(Mg2+), and sodium (Na+), indicating these ions’ significant 
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role in groundwater mineralization and salinity (Hem, 
1985; Hounslow, 1995). Conversely, pH demonstrates 
weak correlations with most ions, reflecting its stability 
despite varying ion concentrations.

Temperature moderately correlates with EC, calcium, 
magnesium, and sodium, likely due to geothermal 
influences and increased mineral solubility at higher 
temperatures (Langmuir, 1997). Strong correlations 
among calcium, magnesium, sodium, chloride, and 
sulfate point to common sources, such as mineral dis-
solution (Appelo and Postma, 2005; Freeze and Cher-
ry, 1979). Additionally, potassium’s high correlation 
with sodium suggests shared geochemical behaviors, 
potentially from cation exchange processes (Fetter, 
2001). Bicarbonate’s moderate correlations reflect the 
groundwater’s buffering capacity and interactions with 
carbonate minerals (Stumm and Morgan, 1996).

The PCA conducted on the physicochemical data of 
groundwater from the aquifer reveals hydrogeochem-
ical processes driven by both natural and anthropo-
genic influences. The first principal component (PC1) 
(Fig. 13), which explains 44.65% of the total variance, 
highlights the predominant role of natural processes 
such as mineral dissolution within the aquifer. Major 
ions like Cl, Na, and SO4 are strongly correlated with 
this component, indicating their likely geological ori-
gin from the dissolution of evaporitic deposits in marl 
and clay formations. The intense evaporation charac-
teristic of the region’s semi-arid climate exacerbates 
these processes by increasing the concentration of 
these ions in the groundwater, thereby contributing to 
salinization. Additionally, water-rock interactions in the 
fractured limestone formations enrich the water with 
Ca and HCO3, also influencing pH, which tends toward 
alkaline values.

The second principal component (PC2), explaining 
13.73% of the variance, reflects anthropogenic in-
fluences, primarily stemming from the agricultural 
activities dominating the region. Elevated NO3 con-
centrations, correlated with this component, indicate 
contamination from chemical fertilizers and irriga-
tion water. These nitrates rapidly infiltrate the aquifer, 
particularly in sandy zones with high permeability or 
in fractured limestone areas. The independent corre-
lation between NO₃− and major ions suggests a dis-
tinct source, confirming the anthropogenic impact on 
groundwater quality. Nitrate contamination of ground-
water is a serious issue in semi-arid regions, primarily 

due to agricultural practices and wastewater discharge 
(Ramalingam et al. ,2022).  In these areas, groundwa-
ter is a vital water source, and nitrate contamination 
can pose significant health risks (Khader et al.,  2021; 
Bencheihk et al., 2025). 

Samples located in the quadrant corresponding to Cl−, 
Na2

+, and SO4
2− indicate dominance by evaporation pro-

cesses and the dissolution processes of salts within 
geological strata. In contrast, those oriented toward 
NO3

- and HCO3
- signify zones influenced by agricultur-

al inputs or recent recharge. This analysis highlights 
a clear dichotomy between highly mineralized waters 
of geological and climatic origin and those affected by 
human activities. An integrated water resource man-
agement approach, considering these two types of 
influences, is essential to preserve the quality of the 
aquifer in this semi-arid context.

Conclusion
The hydrogeochemical analysis of the Remila basin in 
northeastern Algeria reveals diverse chemical facies in 
groundwater, primarily characterized by calcium-sul-
fate (Ca-SO₄) and calcium-bicarbonate (Ca-HCO₃) 
types, reflecting complex geological compositions and 
water-rock interactions. Groundwater mineralization is 
mainly driven by the dissolution of evaporitic minerals 
like gypsum and halite, with strong correlations be-
tween electrical conductivity and ions such as chloride, 
sulfate, calcium, and sodium. Ion exchange processes, 
indicated by variations in Na⁺/Cl⁻ ratios and relation-
ships between calcium, magnesium, and sodium, sig-
nificantly influence groundwater chemistry. Elevated 
strontium levels, especially in areas with rapid runoff, 
point to the impact of evaporitic formations and celes-
tite dissolution, supported by Sr²⁺/Ca²⁺ ratios exceed-
ing 1%. Lithium concentrations suggest prolonged wa-
ter-rock interactions, indicating deep aquifer systems. 
Principal Component Analysis (PCA) identifies natural 
mineralization and anthropogenic pollution, particu-
larly nitrate contamination, as key factors affecting 
groundwater chemistry. 

The groundwater is generally undersaturated with ma-
jor minerals, indicating ongoing dissolution processes, 
while spatial variability in water quality parameters 
highlights both geological and anthropogenic influenc-
es on the aquifer system.
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